
Where Has My Time Gone?

Noa Zilberman, Matthew Grosvenor, Diana Andreea Popescu, Neelakandan
Manihatty-Bojan, Gianni Antichi, Marcin Wójcik, and Andrew W. Moore

Computer Laboratory, University of Cambridge
firstname.surname@cl.cam.ac.uk

Abstract. Time matters. In a networked world, we would like mobile devices to
provide a crisp user experience and applications to instantaneously return results.
Unfortunately, application performance does not depend solely on processing
time, but also on a number of different components that are commonly counted
in the overall system latency. Latency is more than just a nuisance to the user,
poorly accounted-for, it degrades application performance. In fields such as high
frequency trading, as well as in many data centers, latency translates easily to fi-
nancial losses. Research to date has focused on specific contributions to latency:
from improving latency within the network to latency control on the application
level. This paper takes an holistic approach to latency, and aims to provide a
break-down of end-to-end latency from the application level to the wire. Using a
set of crafted experiments, we explore the many contributors to latency. We assert
that more attention should be paid to the latency within the host, and show that
there is no silver bullet to solve the end-to-end latency challenge in data centers.
We believe that a better understanding of the key elements influencing data cen-
ter latency can trigger a more focused research, improving the user’s quality of
experience.

1 Introduction

Time plays a major role in computing, as it translates directly to financial losses [6,13].
User demands for a highly interactive experience (e.g., online shopping, web search, on-
line gaming etc.) has put stringent demands on applications to consistently meet tight
deadlines. Nowadays, the question Can the application (job) meet a deadline? is re-
placed by Will the application get the consistent, low latency, guarantees needed to
meet user demands?.

In the past, large propagation delays and unoptimized hardware have eclipsed ineffi-
ciencies in end-system hardware and software: operating systems and applications. Yet
decades ago, latency was identified as a fundamental challenge [2,11]. The emergence
of data centers increased the importance of the long tail of latency problem: due to the
scaling effect within a data center, every small latency issue is having an increasing
effect on the performance [1]. Only 5 years ago a switch latency of 10µs and an OS
stack latency of 15µs were considered the norm [12], however, since then, a significant
improvement has been achieved [5,3]. To fully understand this latency improvement,
this paper takes an end-to-end approach, focusing upon the latency between the time a
request is issued by an application to the time a reply has returned to that application.

This approach has the advantage of maximizing the throughput of a system, which is
the main goal of a user, rather than optimizing discrete parts of the system. We con-
sider the best-possible configurations, which may not be identical to the most realistic
configuration, and further focus on the Ethernet-based systems common in data centers.

In this paper we use bespoke experiments (described in §2) to derive a breakdown to
the end-to-end latency of modules in commodity end-host systems (discussed in §3). We
identify the latency components that require the most focus for improvement and pro-
pose trajectories for such work. Finally, we contribute a taxonomy of latency contribu-
tors: low-latency/low-variability: the “Good”, high-latency/high-variability: the “Bad”,
and heavy-tailed or otherwise peculiar latency: the “Ugly”, while also noting the chal-
lenge of profiling application network performance.

1.1 Motivation

The contribution of latency affects a user-experience in a significant, sometimes subtle,
manner. More than a simple, additive, increase in run-time, application performance can
be dramatically decreased with an increase in latency. Figure 1 illustrates the impact of
latency upon performance for several common data center applications.

0.
0

0.
1

0.
2

0.
5

1.
0

2.
0

5.
0

10
.0

20
.0

50
.0

10
0.

0

Added Delay [µs]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

Pe
rfo

rm
an

ce

Apache
Memcached
TPCC MySQL

Fig. 1. Delay Effect on Application Performance.
Using an experimental configuration described in Section 2, Figure 1 illustrates

experimental results for three application-benchmarks. Each benchmark reports results
for an application-specific performance metric. These application-specific benchmarks
are normalized to allow comparisons to be made among the applications.

The three benchmarks we use are Apache benchmark1 reporting mean requests
per second, Memcached benchmark2 reporting throughput, and TPC-C MySQL bench-
mark3 reporting New-Order transactions per minute, (where New-Order is one of the
database’s tables).

Between the two hosts of the experimental configuration described in Section 2,
we insert a bespoke hardware device to inject controlled latency. We implemented a

1 https://httpd.apache.org/docs/2.4/programs/ab.html
2 http://docs.libmemcached.org/bin/memaslap.html
3 https://github.com/Percona-Lab/tpcc-mysql

https://httpd.apache.org/docs/2.4/programs/ab.html
http://docs.libmemcached.org/bin/memaslap.html
https://github.com/Percona-Lab/tpcc-mysql

latency-injection appliance4 that allows us to add arbitrary latency into the system. Past
latency injection has been done with approaches such as NetEm [4], yet this proved
inappropriate for our work. Alongside limited granularity, such approaches may not
reliably introduce latency of less than several tens of microseconds [8]. In contrast, our
latency gadget adds 700ns of base latency and permits further additional latency, at 5ns
granularity, up to a maximum5 determined by the rate of operation.

Each test begins by measuring a baseline, which is the performance of each bench-
mark under the default setup conditions, taking into account the base latency introduced
by the latency-injection appliance. Latency is then artificially inserted by the appliance,
and the application-specific performance is measured. We can derive the impact on ex-
periments of the artificially inserted latency by removing the baseline measurement. For
the three benchmarks, Figure 1 shows the effect of added latency. Each benchmark was
run 100 times for the baseline and for each added latency value. The graph plots the
average values, and standard errors are omitted for clarity, as they are below 0.005. In
one run, the Apache benchmark sends 100000 requests and the Memcached benchmark
sends 10 million requests. The TPC-C benchmark runs continuously for 1000 seconds,
with an additional time of 6 minutes of warm-up, resulting in 100 measurements over 10
seconds periods. The application most sensitive to latency is Memcached: the addition
of 20µs latency leads to a performance drop of 25%, while adding 100µs will reduce
its throughput to 25% of the baseline. The TPC-C benchmark is the least sensitive to la-
tency, although still exhibits some performance loss: 3% reduction in performance with
an additional 100µs. Finally, the Apache benchmark observes a drop in performance
that starts when 20µs are added, while adding 100µs leads to a 46% performance loss.

While the results above are obtained under optimal setup conditions, within an oper-
ational data center worse-still results would be expected as latency is further increased
under congestion conditions and as services compete for common resources. The re-
sults of Figure 1 show clearly that even a small increase in latency, of the scale shown
in this paper, can significantly affect an application’s performance.

2 Experiments

This section presents experiments we used to provide a decomposition of the latency
between the application and the physical-wire of the host. Full results of these experi-
ments are given in Section 3 with the outcome of successive tests presented in Table 1.
Each experiment in this section is annotated with the corresponding entry number in
Table 1.

2.1 Tests Setup

For our tests setup we use two identical hosts running Ubuntu server 14.04LTS, kernel
version 4.4.0-42-generic. The host hardware is a single 3.5GHz Intel Xeon E5-2637 v4

4 Our latency-injection appliance is an open-source contributed project as part of NetFPGA
SUME since release 1.4.0.

5 The maximum latency introduced is a function of the configured line-rate. The appliance can
add up to 700µs of latency at full 10Gb/s rate, and up to 7s at 100Mbps.

on a SuperMicro X10-DRG-Q motherboard. All CPU power-saving, hyper-threading
and frequency scaling are disabled throughout our tests. Host adapter evaluation uses
commodity network interface cards (NICs), Solarflare SFN8522, and Exablaze X10,
using either standard driver or a kernel bypass mode (test dependent). For minimum
latency, interrupt hold-off time is set to zero. Each host uses identical NICs for that
particular NIC experiment and we only consider Ethernet-based communication. As
illustrated in Figure 3, an Endace 9.2SX2 DAG card (7.5ns time-stamping resolution)
and a NetOptics passive-optical tap are used to intercept client-server traffic and per-
mit independent measurement of client & server latency. The experiments are repro-
ducible using the procedures documented at http://www.cl.cam.ac.uk/research/
srg/netos/projects/latency/pam2017/.

2.2 In-host latency

Figure 2 illustrates the various elements contributing to the experienced latency within
the host.

User
Space

OS

Driver

PCIe

NIC /
NetFPGA

Entire Host Latency

Interconnect Latency

User Space+ OS Latency

User Space Latency

Host

Fig. 2. End Host Tests Setup.

DAG

User
Space

OS

Driver

PCIe

NIC

Client-Server, Kernel Bypass

Client-Server User
Space

OS

Driver

PCIe

NIC
TAP

Client Server

TAP

Fig. 3. Client-Server Tests Setup.

Timestamp Counter Latency (1) To accurately measure latency, we set an accuracy
baseline for our methods. Our latency measurements are based on the CPU’s Time
Stamp Counter (TSC). TSC is a 64-bit register, present on the processor, it counts the
number of cycles since reset and thus provides a resolution of approximately 288ps-per-
cycle although realistically there is tens of nanoseconds resolution due to CPU pipeline
effects. Access to TSC is done using rdtsc x86 assembly instruction. In order to un-
derstand hidden latency effects, and following the Intel recommendations for TSC ac-
cess [10], we conduct two read operations consecutively. We repeat this simple TSC
read operation a large number of times (order of 1010 events), and study the time gaps
measured between every pair of consecutive reads. Results are saved into previously
allocated and initialized buffers, and access to the buffers is outside the measurement
mainline.

This test is conducted in three different modes: firstly, Kernel Cold Start (1a) which
serves as our approximation of a bare metal test. Kernel Cold Start measures very early
within the kernel boot process, before the scheduler, multiprocessing and multicore
support have been started. The second test, Kernel Test (1b), runs from within the kernel,
and represents an enhanced version of the recommended test described in [10]. The third
test, User Space Test (1c), provides high-accuracy time stamping measurement from

http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/pam2017/
http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/pam2017/

within a user-space application. The application is pinned to a single CPU core and all
other tasks and interrupts are moved to other cores. This is representative of real-time
application operation. In contrast to the Kernel Test, interrupts, such as scheduling pre-
emption, are not disabled so as to represent the runtime conditions of real applications.

User Space + OS Latency (2) This experiment investigates the combined latency of
the (user-space) application and the operating system. The test sets up two processes
and opens a datagram socket between them, measuring the round trip time (RTT) for a
message sent from a source process to the destination process, and back. TSC is used
to measure the latency and the time is measured by reading TSC before and after the
message reply is received. While this does not fully exercise the network stack, it does
provide useful insight into the kernel overhead.

Virtualized Environment (1d) The contribution of a virtualized environment is exam-
ined by repeating the TSC tests from within a Virtual Machine (VM). We used Virtual-
Box [9] version 4.3.36 as the hypervisor, with an Ubuntu VM (same version as the base
OS). The VM was configured to run the guest OS on a single dedicated CPU core with
no co-located native operating system activities.

Host Interconnect (3) To evaluate the latency of the host interconnect (e.g., PCI-
Express), we used the NetFPGA SUME platform [16], which implements x8 PCIe Gen3
interface. The DMA design is instrumented to measure the interconnect latency. As the
hardware and the processor use different clock sources, the one-way latency can not
be directly measured. Instead, the round trip latency of a read operation (a non-posted
operation that incorporates an explicit reply) is measured. Every read transaction from
the NetFPGA to the CPU is timestamped at 6.25ns accuracy within the DMA engine
when each request is issued and when its reply returns. The cache is warmed before the
test, to avoid additional latency due to cache misses, and the memory address is fixed.
The measured latency does not account for driver latency, as neither the driver nor the
CPU core participate in the PCIe read transaction.

Host Latency (4) To measure the latency of an entire host we use a bespoke request-
reply test to measure the latency through the NIC, PCIe Interconnect, Kernel and net-
work stack, the application level, and back to the NIC. Contrast to the User Space + OS
Latency experiment, here packets traverse the networks stack only once in each direc-
tion. Packets are injected by a second host, and using the DAG card we isolate the host
latency, measuring the latency from the packet’s entrance to the NIC and until it returns
from the NIC.

Kernel Bypass influence (5) Kernel bypass is promoted as a useful methodology and
we consider the latency contribution of the operating-system kernel alone and the im-
pact of kernel-bypass upon latency. Using tests comparable to those of Host Latency ex-
periment we can then measure latency using the kernel bypass supported by our NICs
(X10, SFN8522). Our performance comparison contrasts the kernel with bypass en-
abled and disabled.

2.3 Client-Server Latency (6)

Experiments are extended from single-host (and, where appropriate, hardware request-
reply server) to a pair of network-hosts as shown in Figure 3. The two servers are
directly connected to each other. Using a test method based upon that described in the
Host Latency experiment, we add support for request-reply at both hosts. This allows
us to measure latency between the user-space application of both machines. We further
extend this experiment to measure the latency of queries (both get and set) under the
Memcached benchmark, indicative of realistic user-space application latency.

2.4 Network Latency

We measure three components that contribute to network latency: networking devices
within the network, cabling (e.g., fiber, copper), and networking devices at the edge.
The network device at the edge is represented in this study by the NIC. For networking
devices within the network we focus on electrical packet switches (EPS) as the most
commonly used networking devices within data center today. Networking devices such
as routers will inherently have a latency that is the same or larger than a switch, thus we
do not study them specifically.

Our focus in this work is on the minimum latency components within a system. We
therefore do not evaluate latency components of networking devices such as queueing
and buffering or congestion. We consider these out of scope in our attempt to understand
the most-ideal latency situation.

Cabling. The propagation delay over a fiber is 4.9ns per meter, and the delay over
a copper cable varies between 4.3ns and 4.4ns per meter, depending on the cable’s
thickness and material used. We corroborate these numbers by sending packet trains
over varying lengths of cable and measuring using DAG the latency between transmit
and receive6. In our reported tests we use fiber exclusively.

NIC Latency (7). Measuring NIC-latency is a subtle art. At least three components
contribute to a typical NIC latency figure: the NIC’s hardware, the Host Bus Adapter
(a PCI-Express interconnect in our case) and the NIC’s driver. There are two ways to
measure the latency of a NIC: the first is injecting packets from outside the host to the
NIC, looping the packets at the driver and capturing them at the NIC’s output port. The
second is injecting packets from the driver to the NIC, using a (physical or logical)
loopback at the NIC’s ports and capturing the returning packet at the driver. Neither of
these ways allows us to separate the hardware-latency contribution from the rest of its
latency components or to measure one way latency. Acknowledging these limitations,
we opt for the second method, injecting packets from the driver to the NIC. We use
a loopback test provided by Exablaze with the X10 NIC7. The test writes a packet to
the driver’s buffer, and then measures the latency between when the packet starts to
be written to PCIe and when the packet returns. This test does not involve the kernel.

6 We note that the resolution of the DAG of 7.5ns puts short fiber measurements within this
range of error

7 The source code for the test is provided with the NIC, but is not open source.

A similar open-source test provided by Solarflare as part of Onload (eflatency), which
measures RTT between two nodes, is used to evaluate SFN8522 NIC. The propagation
delay on the fiber is measured and excluded from the NIC latency results.

Switch Latency (8). We measure switch latency using a single DAG card to timestamp
the entry and departure time of a packet from a switch under test. The switch under test
is statically configured to send packets from one input port to another output port. No
other ports are being utilized on the switch during the test, so there is no crosstalk traffic.
We vary the size of the packets sent from 64B to 1514B.

We evaluate two classes of switches, both of them cut-through switches: an Arista
DCS-7124FX layer 2 switch, and an ExaLINK50 layer 1 switch. The latency reported
is one way, end of packet to end of packet.

Caveats: Latest generation cut through switching devices, such as Mellanox Spec-
trum and Broadcom Tomahawk, opt for lower latency than we measure, on the order of
330ns. We were not able to obtain these devices. As a result, later discussion of these, as
well as of large store-and-forward spine switches (e.g., Arista 7500R) relies on results
taken from vendors’ datasheet and industry analysis [15].

3 Latency Results
Experiment Minimum Median 99.9th Tail Observation Period

1a TSC - Kernel Cold Start 7ns 7ns 7ns 11ns 1 Hour
1b TSC - Kernel 9ns 9ns 9ns 6.9µs 1 Hour
1c TSC - From User Space 9ns 10ns 11ns 49µs 1 Hour
1d TSC - From VM User Space 12ns 12ns 13ns 64ms 1 Hour
2a User Space + OS (same core) 2µs 2µs 2µs 68µs 10M messages
2b User Space + OS (other core) 4µs 5µs 5µs 31µs 10M messages
3a Interconnect (64B) 552ns 572ns 592ns 608ns 1M Transactions
3b Interconnect (1536B) 976ns 988ns 1020ns 1028ns 1M Transactions
4 Host 3.9µs 4.5µs 21µs 45µs 1M Packets
5 Kernel Bypass 895ns 946ns 1096ns 5.4µs 1M Packets
6a Client-Server (UDP) 7µs 9µs 107µs 203µs 1M Packets
6b Client-Server (Memcached) 10µs 13µs 240µs 20.3ms 1M Queries
7a NIC - X10 (64B) 804ns 834ns 834ns 10µs 100K Packets
7b NIC - SFN8522 (64B) 960ns 985ns 1047ns 3.3µs 100K Packets
8a Switch - ExaLINK50 (64B) 0α 2.7ns α 17.7ns α 17.7ns α 1000 Packets
8b Switch - ExaLINK50 (1514B) 0α 2.7ns α 17.7ns α 17.7ns α 1000 Packets
8c Switch - 7124FX (64B) 512ns 534ns 550ns 557ns 1000 Packets
8d Switch - 7124FX (1514B) 512ns 535ns 557ns 557ns 1000 Packets

Table 1. Summary of Latency Results. Entries marked α return results that are within DAG
measurement error-range.

The results of the experiments described in Section 2 are presented in Table 1. The
accuracy of time-measurements in kernel space, user space, or within a VM is on the
order of tens of CPU clock cycles (approximately 10ns in our system). Any operation
beyond that is on the order of between hundreds of nanoseconds and microseconds. To

better understand this, Figure 4 shows the relative latency contribution of each com-
ponent. The figure makes it clear that there is no single component that contributes
overwhelmingly to end-host latency: while the kernel (including the network stack) is
certainly important, the application level also makes significant contribution to latency
as, even in our straightforward evaluation example, applications incur overheads due to
user-space/kernel-space context switches.

Deriving the latency of different components within the network is not as straight-
forward as within the host, and depends on the network topology.

To illustrate this impact we use four typical networking topologies, depicted in Fig-
ure 6, combined with the median latency results reported in Table 1. Representing the
store-and-forward spine switch we use the latency of Arista-7500R switch. Figure 5
shows the relative latency contribution within each network topology.

While differences in latency contribution here are enormous, just as in the end-
host case single huge contributor to network latency. Furthermore, the latency of the
fibers, which is often disregarded, has a magnitude of microseconds in big data centers
and becomes a significant component of the overall latency. However, unlike any other
component, propagation delay is one aspect that can not be improved, hinting that min-
imizing the length of the traversal path through data centers needs to become a future
direction of research.

 0

 20

 40

 60

 80

 100

Minimum Median 99.9%

La
te

nc
y

Co
nt

rib
ut

io
n[

%
]

TSC
VM
PCIe
Kernel
Application

Fig. 4. End Host Latency Contribution.

 0

 20

 40

 60

 80

 100

Single-Rack HFT Fat-Tree Big-DC

La
te

nc
y

Co
nt

rib
ut

io
n[

%
] NIC

Fiber
Switching

Fig. 5. Network Latency Contribution.

Cut Through ToR, 2m fibres, 10GE

Single Rack

L1 Switching, 1.5m copper, 10GE

HFT

Cut Through, 2m, 5m & 10m fibres, 10GE

Fat tree

Store-forward spine, 100m / 100GE fibers

Big DC Fat tree

Fig. 6. Different Network Topologies.

4 Tail Latency Results

Results in the previous section range between their stated minimum and the 99.9th per-
centile. However, our experiments also provide insight into heavy-tail properties of the
measured latency. Such results, which are not caused by network congestion or other
oft-stated causes of tail-latency, are briefly discussed in this section.

The relative scale of these tail latency cases is usefully illustrated by considering the
TSC (1). The tail latency values are clearly illustrated when using the TSC experiment
(§ 2.2) and all subsequent experiments using the TSC measurement.

While up to 99th percentile for the typical TSC measurements, the latency is in
the order of 10ns, in both kernel and user space, TSC latencies can be in the order of
microseconds or hundreds of microseconds. VMs show even greater sensitivity with
higher-still outlier values. The CDF of these results is shown in Figure 7. While long
latency events may be infrequent, even a single outlier event can overshadow hundreds
to thousands of other operations. This is keenly illustrated in Figure 8 with a comple-
mentary CDF (CCDF) the aggregated time wasted on tail events. This graph illustrates
that while only 364 out of 22G events of TSC latency in VM user space are 1ms or
longer, these events take almost 5% of the observation period.

0.99990

0.99992

0.99994

0.99996

0.99998

1.00000

 0.001 0.01 0.1 1 10 100 1000 10000

CD
F

--
 P

ro
b.

 (
la

te
nc

y
<

 x
)

TSC Latency [us]

VM User Space
User Space

Kernel

Fig. 7. CDF of TSC Tail Latency.

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 1 100 10000CC
D

F-
-

Pr
ob

(a
gg

.
la

te
nc

y
>

 x
)

TSC Latency [us]

VM User Space
User Space

Kernel

Fig. 8. CCDF of Aggregated TSC Tail Latency.

The OS kernel is a natural source of latency. While in Kernel Cold Start tests (1a) we
did not find any outliers that approach a microsecond, microsecond-long gaps do occur
in a TSC Kernel test (1b) run at the end of our initialization sequence. In user space (1c),
gaps can reach tens of microseconds, even under our best operating conditions. Some
of these events are the clear results of scheduling events, as disabling pre-emption is
not allowed in user space. Experimenting with different (Linux) OS schedulers (e.g.,
NOOP, CFQ and Deadline) show that such events may shift in time, but remain at
the same magnitude and frequency. Further, changing some scheduler parameters, e.g.
CFQ’s “low latency” and “Idle slice”, does not reduce the frequency of microsecond-
long gaps.

The most prominent cause of long time-gaps is not running an application in real
time or pinned to a core. While the frequency of gaps greater than 1µs does not change
significantly, the latency does increase. When pinned in isolation on a CPU, 99.9th per-
centile of the 1µs-or-more gaps are less than 10µs. Without pinning and running in real
time, over 10% of the gaps are 10µs or longer, and several hundreds-of-microsecond
long gaps occur every second. A pinned application sharing a core with other processes

1 while (!done) {
2 //Read TSC twice , one immedately after the other
3 do_rdtscp(tsc , cpu);
4 do_rdtscp(tsc2 ,cpu2);
5 //If the gap between the two reads is above a threshold , save it
6 if ((tsc2 - tsc > threshold) && (cpu == cpu2))
7 buffer[samples ++] = tsc2 -tsc; }

Listing 1.1. Reading and Comparing TSC - Code 1.

1 while (!done) {
2 //Read TSC once
3 do_rdtscp(tsc , cpu);
4 //If the gap between the current and the previous reads is above a

threshold , save it
5 if ((tsc - last > threshold) && (cpu == lastcpu))
6 buffer[samples ++] = tsc -last;
7 last = tsc;
8 lastcpu = cpu; }

Listing 1.2. Reading and Comparing TSC - Code 2.

exhibits latency in-between the aforementioned results - which makes clear VMs are
more prone to long latencies, especially when the VM is running on a single core.

A different source of latency is coding practice: Listings 1.1 and 1.2 show two
ways to conduct the TSC user-space test. While Listing 1.1 measures the exact gap
between two consecutive reads, it potentially misses longer events occurring between
loops. Listing 1.2 overcomes this problem, but also captures gaps caused by the code
itself. Consequently, Listing 1.2’s minimal gap grows from 9ns to 14ns, while the max-
imal gap is about twofold longer. In addition, page faults lead to hundreds of microsec-
onds latencies that can be avoided using e.g. mlock.

5 Discussion

This paper contributes a decomposition of the latency-inducing components between
an application to the wire. We hope that other researchers can make use of this work to
calibrate their design goals and results, and provide a better understanding of the key
components of overall latency. The results are generalizable also to other platforms and
other Linux kernel versions8.

Four observations summarize the lessons learned. First, there is no single source of
latency: using ultra low latency switches or NICs alone are insufficient even when using
sophisticated kernel bypass options. It is only the combination of each of these efforts
which may satisfactorily reduce latency experienced in a network system. Second, tail
events are no longer negligible and result in two side effects: (1) latency-sensitive trans-
actions may experience delays far worse than any performance guarantee or design for
resilience (e.g. if the event is longer than retransmission timeout (RTO)) and (2) the
“noise” – events well beyond the 99.9th percentile – potentially consume far more than
0.01% of the time. This calls for a change of paradigm: instead of qualifying a system

8 Based on evaluation on Xeon E5-2637 v3, i7-6700K and i7-4770 based platforms, and Linux
kernels ranging from 3.18.42 to 4.4.0-42.

by its 99.9th percentile, it may be that a new evaluation is called for; for example a sys-
tem might need to meet a certain signal-to-noise ratio (SNR) (i.e. events below 99.9th

percentile divided by events above it), as in other aspects of engineered systems.
Finally, in large scale distributed systems (e.g., hyper data center) the impact of the

speed of light increases. When a data center uses hundreds of meters long fibers [14]
and the RTT on every 100m is 1µs, the aggregated latency is of the order 10µs to 20µs.
Consequently, the topology used in the network and the locality of the data become im-
portant, leading to approaches that increase networking locality, e.g. rack-scale comput-
ing. While hundred-meter long fibers can not be completely avoided within hyper-data
center, such traversals should be minimized.

5.1 The Good, The Bad and The Ugly

The obtained results can be categorized into three groups: the “Good”, the “Bad”, and
the “Ugly”.
The Good are the latency contributors whose 99.9th percentile is below 1µs. This group
includes the simple operations in kernel and user space, PCIe and a single switch la-
tency.
The Bad are the latency contributors whose 99.9th percentile is above 1µs, but less than
100µs. This includes the latency of sending packets over user space+OS, entire host
latency, client-server latency, RTT over 100m fibers and multi-stage network topology.
The Ugly are the large latency contributors at the far end of the tail, i.e. the “noise”,
contributing more than 100µs. These happen mostly on the user space and within a
VM. “Ugly” events will increasingly overshadow all other events, thereby reducing the
SNR. Some events outside the scope of this paper, such as network congestion, also fall
within this category [7].

5.2 Limitations

This paper focuses upon the unavoidable latency components within a system. It thus
does not take into account aspects such as congestion, queueing or scheduling effects.
No attempt is made to consider the impact of protocols, such as TCP, and their effect
on latency and resource contention within the host is also outside the scope.

This work has focused on commodity hardware and standard networking practices
and on PCIe interconnect and Ethernet-based networking, rather than, e.g., RDMA and
RCoE, reserved for future work.

6 Conclusion

Computer users hate to wait – this paper reports on some of the reasons for latency in
a network-based computer system. Using a decompositional analysis, the contribution
of the different components to the overall latency is quantified, and we show that there
is no single overwhelming contributor to saving the end-to-end latency challenge in
data centers. Further we conclude that more and more latency components, such as the
interconnect and cabling, will become significant as the latency of other components
continues to improve. We also conclude that the long tail of events, beyond the 99.9th

percentile, is far more significant than its frequency might suggest and we go some way
to quantify this contribution.

“Good”,“Bad”, and “Ugly” classes are applied to a range of latency-contributors.
While many of the “Bad” latency contributors are the focus of existing effort, the “Ugly”
require new attention, otherwise performance cannot be reasonably guaranteed. Giving
the “Ugly” latencies attention will require concerted effort to improve the state of in-
strumentation, ultimately permitting end-to-end understanding.

7 Acknowledgments

We would like to thank the many people who contributed to this paper. We would like
to thank Salvator Galea and Robert N Watson, who contributed to early work on this
paper. This work has received funding from the EPSRC grant EP/K034723/1, Lever-
hulme Trust Early Career Fellowship ECF-2016-289, European Union’s Horizon 2020
research and innovation programme 2014-2018 under the SSICLOPS (grant agreement
No. 644866), ENDEAVOUR (grant agreement No. 644960) and EU FP7 Marie Curie
ITN METRICS (grant agreement No. 607728).

Dataset A reproduction environment of the experiments, and the experimental results,
are both available at http://www.cl.cam.ac.uk/research/srg/netos/projects/
latency/pam2017/.

References
1. Barroso, L.A.: Landheld Computing. In: IEEE International Solid State Circuits Conference

(ISSCC) (2014), keynote
2. Cheshire, S.: It’s the Latency, Stupid (may 1996), http://www.stuartcheshire.org/

rants/Latency.html, [Online; accessed July 2016]
3. Guo, C., et al.: RDMA over commodity ethernet at scale. In: SIGCOMM ’16 (2016)
4. Hemminger, S.: NetEm - Network Emulator. http://man7.org/linux/man-pages/man8/

tc-netem.8.html, [Online; accessed July 2016]
5. Kalia, A., et al.: Design guidelines for high performance RDMA systems. In: USENIX ATC

16. pp. 437–450 (2016)
6. Mayer, M.: What Google Knows. In: Web 2.0 Summit (2006)
7. Mittal, R., et al.: TIMELY: RTT-based congestion control for the datacenter. In: SIGCOMM

Comput. Commun. Rev. vol. 45, pp. 537–550. ACM (2015)
8. Nussbaum, L., Richard, O.: A comparative study of network link emulators. In: SpringSim

’09. pp. 85:1–85:8 (2009)
9. Oracle: Oracle VM VirtualBox, https://www.virtualbox.org/, [Online; accessed Octo-

ber 2016]
10. Paoloni, G.: How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction

Set Architectures. Tech. Rep. 324264-001, Intel (2010)
11. Patterson, D.A.: Latency lags bandwidth. Commun. ACM 47(10) (Oct 2004)
12. Rumble, S.M., et al.: It’s time for low latency. In: HotOS’13. pp. 11–11. USENIX Associa-

tion (2011)
13. SAP: Big Data and Smart Trading (2012)
14. Singh, A., et al.: Jupiter rising: A decade of clos topologies and centralized control in

Google’s datacenter network. SIGCOMM Comput. Commun. Rev. 45(4), 183–197 (2015)
15. Tolly Enterprises: Mellanox Spectrum vs. Broadcom StrataXGS Tomahawk 25GbE &

100GbE Performance Evaluation - Evaluating Consistency & Predictability. Tech. Rep.
216112 (2016)

16. Zilberman, N., et al.: NetFPGA SUME: Toward 100 Gbps as Research Commodity. IEEE
Micro 34(5), 32–41 (September 2014)

http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/pam2017/
http://www.cl.cam.ac.uk/research/srg/netos/projects/latency/pam2017/
http://www. stuartcheshire.org/rants/Latency.html
http://www. stuartcheshire.org/rants/Latency.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
http://man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.virtualbox.org/

	Where Has My Time Gone?

