
A Distributed and Robust SDN Control Plane
for Transactional Network Updates

Marco Canini1 Petr Kuznetsov2 Dan Levin3 Stefan Schmid4

1 Université catholique de Louvain, Belgium 2 Télécom ParisTech, France
3 TU Berlin, Germany 4 TU Berlin & T-Labs, Germany

Abstract—Software-defined networking (SDN) is a novel
paradigm that outsources the control of programmable network
switches to a set of software controllers. The most fundamental
task of these controllers is the correct implementation of the
network policy, i.e., the intended network behavior. In essence,
such a policy specifies the rules by which packets must be
forwarded across the network.

This paper studies a distributed SDN control plane that enables
concurrent and robust policy implementation. We introduce a
formal model describing the interaction between the data plane
and a distributed control plane (consisting of a collection of fault-
prone controllers). Then we formulate the problem of consistent
composition of concurrent network policy updates (termed the
CPC Problem). To anticipate scenarios in which some conflicting
policy updates must be rejected, we enable the composition via
a natural transactional interface with all-or-nothing semantics.

We show that the ability of an f -resilient distributed control
plane to process concurrent policy updates depends on the tag
complexity, i.e., the number of policy labels (a.k.a. tags) available
to the controllers, and describe a CPC protocol with optimal tag
complexity f + 2.

I. INTRODUCTION

The emerging paradigm of Software-Defined Networking
(SDN) promises to simplify network management and enable
building networks that meet specific, end-to-end requirements.
In SDN, the control plane (a collection of network-attached
servers) maintains control over the data plane (realized by
programmable, packet-forwarding switches). Control applica-
tions operate on a global, logically-centralized network view,
which introduces opportunities for network-wide management
and optimization. This view enables simplified programming
models to define a high-level network policy, i.e., the intended
operational behavior of the network encoded as a collection
of forwarding rules that the data plane must respect.

While the notion of centralized control lies at the heart
of SDN, implementing it on a centralized controller does
not provide the required levels of availability, responsiveness
and scalability. How to realize a robust, distributed control
plane is one of the main open problems in SDN and to
solve it we must deal with fundamental trade-offs between
different consistency models, system availability and perfor-
mance. Designing a resilient control plane becomes therefore
a distributed-computing problem that requires reasoning about
interactions and concurrency between the controllers while
preserving correct operation of the data plane.

In this paper, we consider the problem of consistent installa-
tion of network-policy updates (i.e., collections of state modifi-
cations spanning one or more switches)—one of the main tasks
any network control plane must support. We consider a multi-
authorship setting [1] where multiple administrators, control
applications, or end-host applications may want to modify the
network policy independently at the same time, and where a
conflict-free installation must be found.

We assume that we are provided with a procedure to
assemble sequentially arriving policy updates in one (seman-
tically sound) composed policy (e.g., using the formalism
of [2]). Therefore, we address here the challenge of composing
concurrent updates, while preserving a property known as per-
packet consistency [3]. Informally, we must guarantee that
every packet traversing the network must be processed by
exactly one global network policy, even throughout the interval
during which the policy is updated—in this case, each packet
is processed either using the policy in place prior to the update,
or the policy in place after the update completes, but never a
mixture of the two. At the same time, we need to resolve
conflicts among policy updates that cannot be composed in
a sequential execution. We do this by allowing some of the
update requests to be rejected entirely, and requiring that no
data packet is affected by a rejected update.
Our Contributions. Our first contribution is a formal model
of SDN under fault-prone, concurrent control. We then focus
on the problem of per-packet consistent updates [3], and
introduce the abstraction of Consistent Policy Composition
(CPC), which offers a transactional interface to address the
issue of conflicting policy updates. We believe that the CPC
abstraction, inspired by the popular paradigm of software
transactional memory (STM) [4], exactly matches the desired
behavior from the network operator’s perspective, since it
captures the intuition of a correct sequential composition
combined with optimistic application of policy updates. We
term this approach software transactional networking [5].

We then discuss different protocols to solve the CPC prob-
lem. We present FIXTAG, a wait-free algorithm that allows the
controllers to directly apply their updates on the data plane and
resolve conflicts as they progress installing the updates. While
FIXTAG tolerates any number of faulty controllers and does
not require them to be strongly synchronized (thus improving
concurrency of updates), it incurs a linear tag complexity in
the number of possible policies and their induced paths (which

may grow to super-exponential in the network size).
We then present a more sophisticated protocol called

REUSETAG, which uses the replicated state-machine approach
to implement a total order on to-be-installed policy updates.
Given an upper bound on the maximal network latency and
assuming that at most f controllers can fail, we show that
REUSETAG achieves an optimal tag complexity f + 2.

Our work also informs the networking community about
what can and cannot be achieved in a distributed control
plane. In particular, we derive a minimal requirement on
the SDN model without which CPC is impossible to solve.
From the distributed-computing perspective, we show that the
SDN model exhibits concurrency phenomena not yet observed
in classical distributed systems. For example, even if the
controllers can synchronize their actions using consensus [6],
complex interleavings between the controllers’ actions and
packet-processing events prevent them from implementing
CPC with constant tag complexity (achievable using one
reliable controller).
Novelty. To the best of our knowledge, this work initiates
an analytical study of a distributed and fault-tolerant SDN
control plane. We keep our model intentionally simple and
focus on a restricted class of forwarding policies, which
is sufficient to highlight intriguing connections between our
SDN model and conventional distributed-computing models,
in particular, STM [4]. One can view the data plane as a
shared-memory data structure, and controllers can be seen as
read/write processes, modifying the forwarding rules applied
to packets at each switch. The traces of packets constituting the
data-plane workload can be seen as “read-only” transactions,
reading the forwarding rules at a certain switch in order to
“decide” which switch state to read next. Interestingly, since
in-flight packets cannot be dropped (unless explicitly intended)
nor delayed, these read-only transactions must always commit,
in contrast with policy update transactions. This model hence
introduces an interesting new kind of atomicity requirement.

Put in perspective, our definition of concurrent and consis-
tent composition of policy updates can be seen as an instance
of transactional network management. Indeed, in a dynamic
system, where both control and data plane are subject to
changes (policy modifications, workload variations, failures),
it is handy for a control application to have operations with
atomic (all-or-nothing) guarantees. This way control applica-
tions may “program” the network in a sequential manner,
maintain consistent evaluations of network-wide structures,
and easily compose network programs [7].
Roadmap. Section II introduces our model. In Section III
we formulate the CPC problem. Section IV describes our
CPC solutions and their complexity bounds. Section V shows
that under weaker port models, it is impossible to solve
CPC. We discuss related work in Section VI and conclude
in Section VII.

II. MODELING SOFTWARE-DEFINED NETWORKS

We consider a setting where different users (i.e., policy
authors or administrators) can issue policy update requests to

the distributed SDN control plane. We now introduce our SDN
model as well as the policy concept in more detail.
Control plane. The distributed control plane is modeled as a
set of n ≥ 2 controllers, p1, . . . , pn. The controllers are subject
to crash failures: a faulty controller stops taking steps of its
algorithm. A controller that never crashes is called correct
and we assume that there is at least one correct controller.
We assume that controllers can communicate among them-
selves (e.g., through an out-of-band management network)
in a reliable but asynchronous (and not necessarily FIFO)
fashion, using message-passing. Moreover, the controllers have
access to a consensus abstraction [8] that allows them to
implement, in a fault-tolerant manner, any replicated state
machine, provided its sequential specification [6].1

Data plane. Following [3], we model the data plane as a set
P of ports and a set L ⊆ P ×P of directed links. A hardware
switch is represented as a set of ports, and a physical bi-
directional link between two switches A and B is represented
as a set of directional links, where each port of A is connected
to the port of B facing A and every port of B is connected
to the port of A facing B.

We additionally assume that P contains two distinct ports,
World and Drop, which represent forwarding a packet to
the outside of the network (e.g., to an end-host or upstream
provider) and dropping the packet, respectively. A port i /∈
{World,Drop} that has no incoming links, i.e., @j ∈ P :
(j, i) ∈ L is called ingress, otherwise the port is called
internal. Every internal port is connected to Drop (can drop
packets). A subset of ports are connected to World (can
forward packets to the outside). World and Drop have no
outgoing links: ∀i ∈ {World,Drop}, @j ∈ P : (i, j) ∈ L.

The workload on the data plane consists of a set Π of
packets. (To distinguish control-plane from data-plane com-
munication, we reserve the term message for a communication
involving at least one controller.) In general, we will use the
term packet canonically as a type [3], e.g., describing all
packets (the packet instances or copies) matching a certain
header; when clear from the context, we do not explicitly
distinguish between packet types and packet instances.
Port queues and switch functions. The state of the network
is characterized by a port queue Qi and a switch function Si
associated with every port i. A port queue Qi is a sequence
of packets that are, intuitively, waiting to be processed at port
i. A switch function is a map Si : Π → Π × P , that,
intuitively, defines how packets in the port queue Qi are to be
processed. When a packet pk is fetched from port queue Qi,
the corresponding located packet, i.e., a pair (pk′, j) = Si(pk)
is computed and the packet pk′ is placed to the queue Qj .

We represent the switch function at port i, Si, as a collection
of rules. Operationally, a rule consists of a pattern matching on
packet header fields and actions such as forwarding, dropping
or modifying the packets. We model a rule r as a partial map

1The consensus abstraction can be obtained, e.g., assuming eventually
synchronous communication [9] or the eventual leader (Ω) and quorum (Σ)
failure detectors [10], [11].

r : Π → Π × P that, for each packet pk in its domain
dom(r), generates a new located packet r(pk) = (pk′, j),
which results in pk′ put in queue Qj such that (i, j) ∈ L.
Disambiguation between rules that have overlapping domains
is achieved through a priority level, as discussed below. We
assume that every rule matches on a header field called the tag,
which therefore identifies which rules apply to a given packet.
We also assume that the tag is the only part of a packet that
can be modified by a rule.
Port operations. We assume that a port supports an atomic
execution of a read, modify-rule and write operation: the rules
of a port can be atomically read and, depending on the read
rules, modified and written back to the port. Formally, a port
i supports the operation: update(i, g), where g is a function
defined on the sets of rules. The operation atomically reads
the state of the port, and then, depending on the state, uses g
to update it and return a response. For example, g may involve
adding a new forwarding rule or a rule that puts a new tag τ
into the headers of all incoming packets.
Policies and policy composition. Finally we are ready to
define the fundamental notion of network policy. A policy π
is defined by a domain dom(π) ⊆ Π, a priority level pr(π) ∈
N and, for each ingress port, a unique forwarding path, i.e.,
a loop-free sequence of piecewise connected ports that the
packets in dom(π) arriving at the ingress port should follow.
More precisely, for each ingress port i and each packet pk ∈
dom(π) arriving at port i, π specifies a sequence of distinct
ports i1, . . . , is that pk should follow, where i1 = i, ∀j =
1, . . . , s− 1, (ij , ij+1) ∈ L and is ∈ {World,Drop}. The last
condition means that each packet following the path eventually
leaves the network or is dropped.

We call two policies π and π′ independent if dom(π) ∩
dom(π′) = ∅. Two policies π and π′ conflict if they are not
independent and pr(π) = pr(π′). Now a set U of policies
is conflict-free if no two policies in U conflict. Intuitively,
the priority levels are used to establish the order in between
non-conflicting policies with overlapping domains: a packet
pk ∈ dom(π) ∩ dom(π′), where pr(π) > pr(π′), is processed
by policy π. Conflict-free policies in a set U can therefore be
composed: a packet arriving at a port is treated according to
the highest priority policy π ∈ U such that pk ∈ dom(π).
Modeling traffic. The traffic workload on our system is
modeled using inject and forward events defined as follows:
• inject(pk, j): the environment injects a packet pk to an

ingress port j by adding pk to the end of queue Qj , i.e.,
replacing Qj with Qj · pk (i.e., we add pk to the end of
the queue).

• forward(pk, j, pk′, k), j ∈ P : the first packet in Qj is
processed according to Sj , i.e., if Qj = pk · Q′ (i.e.,
pk is the first element of the queue), then Qj is replaced
with Q′ and Qk is replaced with Qk ·pk′, where r(pk) =
(pk′, k) and r is the highest-priority rule in Sj that can
be applied to pk.

Algorithms, histories, and problems. Each controller pi
is assigned an algorithm, i.e., a state machine that (i) ac-

cepts invocations of high-level operations, (ii) accesses ports
with read-modify-write operations, (iii) communicates with
other controllers, and (iv) produces high-level responses.
The distributed algorithm generates a sequence of executions
consisting of port accesses, invocations, responses, and packet
forward events. Given an execution of an algorithm, a history
is the sequence of externally observable events, i.e., inject
and forward events, as well as invocations and responses of
controllers’ operations.

We assume an asynchronous fair scheduler and reliable
communication channels between the controllers: in every
infinite execution, no packet starves in a port queue without
being served by a forward event, and every message sent to a
correct controller is eventually received.

A problem is a set P of histories. An algorithm solves a
problem P if the history of its every execution is in P . An
algorithm solves P f -resiliently if the property above holds in
every f -resilient execution, i.e., in which at most f controllers
take only finitely many steps. An (n− 1)-resilient solution is
called wait-free.

Traces and packet consistency. In a history H , every
packet injected to the network generates a trace, i.e., a
sequence of located packets: each event ev = inject(pk, j)
in E results in (pk, j) as the first element of the sequence,
forward(pk, j, pk1, j1) adds (pk1, j1) to the trace, and each
next forward(pkk, jk, pkk+1, jk+1) extends the trace with
(pkk+1, jk+1), unless jk ∈ {Drop,World} in which case we
extend the trace with (jk) and say that the trace terminates.
Note that in a finite network an infinite trace must contain a
cycle.

Let ρev,H denote the trace corresponding to an inject
event ev = inject(pk, j) in a history H . A trace ρ =
(pk1, i1), (pk2, i2), . . . is consistent with a policy π if pk1 ∈
dom(π) and (i1, i2, . . .) ∈ π.

Tag complexity. It turns out that what can and what cannot
be achieved by a distributed control plane depends on the
number of available tags, used by data plane switches to
distinguish packets that should be processed by different
policies. Throughout this paper, we will refer to the number
of different tags used by a protocol as the tag complexity.
Without loss of generality, we will typically assume that tags
are integers {0, 1, 2, . . .}, and our protocols seek to choose
low tags first; thus, the tag complexity is usually the largest
used tag number x, throughout the entire (possibly infinite)
execution of the protocol and in the worst case.

Monitoring oracle. In order to be able to reuse tags, the
control plane needs some feedback from the network about the
active policies, i.e., for which policies there are still packets in
transit. We use an oracle model in this paper: each controller
can query the oracle to learn about the tags currently in
use by packets in any queue. Our assumptions on the oracle
are minimal, and oracle interactions can be asynchronous.
In practice, the available tags can simply be estimated by
assuming a rough upper bound on the transit time of packets
through the network.

III. THE CPC PROBLEM

Now we formulate our problem statement. At a high level,
the CPC abstraction of consistent policy composition accepts
concurrent policy-update requests and makes sure that the
requests affect the traffic as a sequential composition of their
policies. The abstraction offers a transactional interface where
requests can be committed or aborted. Intuitively, once a
request commits, the corresponding policy affects every packet
in its domain that is subsequently injected. But in case it
cannot be composed with the currently installed policy, it is
aborted and does not affect a single packet. On the progress
side, we require that if a set of policies conflict, at least one
policy is successfully installed. We require that each packet
arriving at a port is forwarded immediately; i.e., the packet
cannot be delayed, e.g., until a certain policy is installed.

CPC Interface. Formally, every controller pi accepts requests
applyi(π), where π is a policy, and returns acki (the request
is committed) or nacki (the request is aborted).

We specify a partial order relation on the events in a history
H , denoted <H . We say that a request req precedes a request
req′ in a history H , and we write req <H req′, if the response
of req appears before the invocation of req′ in H . If none of
the requests precedes the other, we say that the requests are
concurrent. Similarly, we say that an inject event ev precedes
(resp., succeeds) a request req in H , and we write ev <H req
(resp., req <H ev), if ev appears before the invocation (resp.,
after the response) of req in H . Two inject events ev and ev′

on the same port in H are related by ev <H ev′ if ev precedes
ev′ in H .

An inject event ev is concurrent with req if ev 6<H req and
req 6<H ev. A history H is sequential if in H , no two requests
are concurrent and no inject event is concurrent with a request.

Let H|pi denote the local history of controller pi, i.e., the
subsequence of H consisting of all events of pi. We assume
that every controller is well-formed: every local history H|pi
is sequential, i.e., no controller accepts a new request before
producing a response to the previous one. A request issued by
pi is complete in H if it is followed by a matching response
(acki or nacki); otherwise it is called incomplete. A history H
is complete if every request is complete in H . A completion
of a history H is a complete history H ′ which is like H
except that each incomplete request in H is completed with
ack (intuitively, this is necessary if the request already affected
packets) or nack inserted somewhere after its invocation.

Two histories H and H ′ are equivalent if H and H ′ have
the same sets of events, for all pi, H|pi = H ′|pi, and for all
inject events ev in H and H ′, ρev,H = ρev,H′ .

Sequentially composable histories. A sequential complete
history H is legal if these two properties are satisfied: (1) a
policy is committed in H if and only if it does not conflict
with the set of policies previously committed in H , and (2)
for every inject event ev = inject(pk, j) in H , the trace ρev,H
is consistent with the composition of all committed policies
that precede ev in H .

Definition 1 (Sequentially composable history): We say that

a complete history H is sequentially composable if there
exists a legal sequential history S such that (1) H and S are
equivalent, and (2) <H⊆<S .
Intuitively, Definition 1 implies that the traffic in H is
processed as if the requests were applied atomically and
every injected packet is processed instantaneously. The legality
property here requires that only committed requests affect the
traffic. Moreover, the equivalent sequential history S must
respect the order in which non-concurrent requests take place
and packets arrive in H .

Definition 2 (CPC): We say that an algorithm solves the
problem of Consistent Policy Composition (CPC) if for its
every history H , there exists a completion H ′ such that:

1) Consistency: H ′ is sequentially composable.
2) Termination: Eventually, every correct controller pi that

accepts a requests applyi(π), returns acki or nacki in H .
Note that, for an infinite history H , the Consistency and
Termination requirements imply that an incomplete request
in H can only cause aborts of conflicting requests for a
finite period of time: eventually it would abort or commit
in a completion of H and if it aborts, then no subsequent
conflicting requests will be affected. As a result we provide
an all-or-nothing semantics: a policy update, regardless of the
behavior of the controller that installs it, either eventually takes
effect or does not affect a single packet. Figure 1 gives an
example of a sequentially composable history.

IV. CPC SOLUTIONS AND COMPLEXITY BOUNDS

We now discuss how the CPC problem can be solved and
analyze the complexity its solutions incur. We begin with a
simple wait-free algorithm, called FIXTAG, which implicitly
orders policies at a given ingress port. FIXTAG incurs a
linear tag complexity in the number of all possible paths that
the proposed policies may stipulate; this is the best we can
hope for any protocol without feedback from the network.
Then we present REUSETAG, an f -resilient algorithm with
tag complexity f + 2, which is based on an estimate on the
maximal packet latency. We also show that REUSETAG is
optimal, i.e., no CPC solution admits smaller tag complexity
for all networks.

A. FIXTAG: Per-Policy Tags

The basic idea of FIXTAG is to assign a distinct tag to each
possible forwarding path that any policy may ever use. Let τk
be the tag representing the kth possible path. FIXTAG assumes
that, initially, for each internal port ix that lies on the kth path,
a rule rτk(pk) = (pk, ix+1) is installed, which forwards any
packet tagged τk to the path’s successive port ix+1.

FIXTAG works as follows. Upon receiving a new policy
request π and before installing any rules, a controller pi sends
a message to all other controllers informing them about the
policy π it intends to install. Every controller receiving this
message rebroadcasts it (making the broadcast reliable), and
starts installing the policy on pi’s behalf. This ensures that
every policy update that started affecting the traffic eventually
completes.

switch
1

switch 3

switch
2

apply(π1) apply(π2) apply(π3)

p1 p2 p3

(a)

sw 1
sw 2
sw 3

p1
p2
p3

[]
[]

[]

apply(π1)
apply(π2)

apply(π3) nack

ack
ack

Time

[]
[]

apply(π1)

apply(π2) ack

ack

Time

=~H H'

(b)
Fig. 1. Example of a policy composition with a 3-controller control plane and 3-switch data plane (a). The three controllers try to concurrently install three
different policies π1, π2, and π3. We suppose that π3 is conflicting with both π1 and π2, so π3 is aborted (b). Circles represent data-plane events (an inject
event followed by a sequence of forward events). Next to the history H (shown on (b) left) we depict its “sequential equivalent” HS (shown on (b) right).
In the sequential history, no two requests are applied concurrently.

Let i1, . . . , is be the set of ingress ports, and πj be the
path specified by policy π for ingress port ij , j = 1, . . . , s.
To install π, FIXTAG adds to each ingress port ij a rule that
tags all packets matching the policy domain dom(π) with the
tag describing the path πj . However, since different policies
from different controllers may conflict, we require that every
controller updates the ingress ports in a pre-defined order.
Thus, conflicts are discovered already at the lowest-order
ingress port,2 and the conflict-free all-or-nothing installation
of a policy is ensured.

The use of reliable broadcast and the fact that the ingress
ports are updated in the same order imply the following:

Theorem 3: FIXTAG solves the CPC problem in the wait-
free manner, without relying on the oracle and consensus
objects.
Observe that FIXTAG does not require any feedback from
the network on when packets arrive or leave the system.
Controllers only coordinate implicitly on the lowest-order
ingress port. Ingress ports tag all traffic entering the network;
internally, packets are only forwarded according to these tags.

However, while providing a correct network update even
under high control plane concurrency and failures, FIXTAG has
a large tag complexity. Namely, this depends in a linear fashion
on the number of possible policies and their induced network
paths, which may grow to exponential in the network size.
Note that this is unavoidable in a scenario without feedback—
a tag may never be safely reused for a different path as this
could always violate CPC’s consistency requirement.

In practice, rules may be added lazily at the internal ports,
and hence the number of rules will only depend on the
number of different and actually used paths. However, we
show that it is possible to exploit knowledge of an upper
bound on the packet latency, and reuse tags more efficiently.
Such knowledge is used by the algorithm described in the next
section to reduce the tag complexity.

B. REUSETAG: Optimal Tag Complexity

The REUSETAG protocol sketched in Figure 2 allows con-
trollers to reuse up to f + 2 tags dynamically and in a
coordinated fashion, given a minimal feedback on the packets
in the network, namely, an upper bound on the maximal
network latency. As we show in this section, there does not

2Recall that in our model failures do not affect the data plane; therefore,
ports do not fail.

exist any solution with less than f + 2 tags. Note that in the
fault-free scenario (f = 0), only one bit can be used for storing
the policy tag.

State machine. The protocol is built atop a replicated state
machine (implemented, e.g., using the construction of [6]),
which imposes a global order on the policy updates and
ensures a coordinated use and reuse of the protocol tags. For
simplicity, we assume that policies are uniquely identified.

The state machine we are going to use in our algorithm,
and which we call PS (for Policy Serialization), exports, to
each controller pi, two operations:

• push(pi, π), where π is a policy, that always returns ok;
• pull(pi) that returns ⊥ (a special value interpreted as “no
policy tag is available yet”) or a tuple (π, tag), where π is a
policy and tag ∈ {0, . . . , f + 1}.

Intuitively, pi invokes push(pi, π) to put policy π in the
queue of policies waiting to be installed; and pi invokes
pull(pi) to fetch the next policy to be installed. The invocation
of pull returns ⊥ if there is no “available” tag (to be explained
below) or all policies pushed so far are already installed;
otherwise, it returns a tuple (π, tag), informing pi that policy
π should be equipped with tag tag.

The sequential behavior of PS is defined as follows.
Let S be a sequential execution of PS. Let π1, π2, . . . be
the sequence of policies proposed in S as arguments of
the push() operations (in the order of appearance). Let
(πi,1, τi,1), (πi,2, τi,2), . . . be the sequence of non-⊥ responses
to pull(pi) operations in S (performed by pi). If S contains
exactly k non-trivial (returning non-⊥ values) pull(pi) opera-
tions, then we say that pi performed k non-trivial pulls in S.
If S contains pull(pi) that returns (π, t) 6= ⊥, followed by a
subsequent pull(pi), then we say that π is installed in S.

We say that τk is blocked at the end of a finite history S
if S contains pull(pi) that returns (πk+1, τk+1) but does not
contain a subsequent pull(pi). In this case, we also say that pi
blocks tag τk at the end of S. Note that a controller installing
policy πk+1 blocks the tag associated with the previous policy
πk (or the initially installed policy in case k = 0). Now we
are ready to define the sequential specification of PS via the
following requirements on S:

• Non-triviality: If pi performed k non-trivial pulls, then a
subsequent pull(pi) returns ⊥ if and only if the pull operation

Initially:
seq := ⊥; cur := ⊥

upon apply(π̃)
1 cur := π̃
2 PS.push(pi, π̃)

do forever
3 wait until PS.pull(pi) returns (π, t) 6= ⊥
4 if (seq and π conflict) then
5 res := nack
6 else
7 seq := compose(seq, (π, t))
8 wait until tag(|seq| − 1) is not used
9 install(seq)
10 res := ack
11 if π = cur then output res to the application; cur := ⊥

Fig. 2. The REUSETAG algorithm: pseudocode for controller pi.

is preceded by at most k pushes or f + 1 or more policies are
blocked in S. In other words, the kth pull of pi must return
some policy if at least k policies were previously pushed and
at most f of their tags are blocked.

• Agreement: For all k > 0, there exists τk ∈ {0, . . . , f + 1}
such that if controllers pi and pj performed k non-trivial pulls,
then πi,k = πj,k = πk and τi,k = τj,k = τk. Therefore, the
kth pull of any controller must return the kth pushed policy
πk equipped with τk.

• Tag validity: For all k > 0, τk is the minimal value in
{0, . . . , f + 1} − {τk−1} that is not blocked in {0, . . . , n −
1} when the first pull(pi) operation that returns (πk, τk) is
performed. Here τ0 denotes the tag of the initially installed
policy. The intuition here is that the tag for the kth policy is
chosen deterministically based on all the tags that are currently
not blocked and different from the previously installed tag
τk−1. By the Non-triviality property, at most f tags are blocked
when the first controller performs its kth non-trivial pull. Thus,
{0, . . . , f+1}−{τk−1} contains at least one non-blocked tag.

In the following, we assume that a linearizable f -resilient
implementation of PS is available [12]: any concurrent history
of the implementation is, in a precise sense, equivalent to
a sequential history that respects the temporal relations on
operations and every operation invoked by a correct controller
returns, assuming that at most f controllers fail. Note that
the PS implementation establishes a total order on policies
(π1, tag1), (π2, tag2), . . ., which we call the composition order
(the policy requests that do not compose with a prefix of this
order are ignored).

Algorithm operation. The algorithm is depicted in Figure 2
and operates as follows. To install policy π̃, controller pi first
pushes π̃ to the policy queue by invoking PS.push(pi, π̃).

In parallel, the controller runs the following task (Lines 3-
11) to install its policy and help other controllers. First it keeps
invoking PS.pull(pi) until a (non-⊥) value (πk, τk) is returned
(Line 3); here k is the number of non-trivial pulls performed
by pi so far. The controller checks if πk is conflicting with

previously installed policies (Line 4), stored in sequence seq.
Otherwise, in Line 8, pi waits until the traffic in the network
only carries tag τk−1 (the tag τk−2 used by the penultimate
policy in seq, denoted tag(|seq|− 1)). Here pi uses the oracle
(described in Section II) that produces the set of currently
active policies.

The controller then tries to install πk on all internal ports
first, and after that on all ingress ports, employing the “two-
phase update” strategy of [3] (Line 9). The update of an
internal port j is performed using an atomic operation that
adds the rule associated with πk equipped with τk to the set
of rules currently installed on j. The update on an ingress
port j simply replaces the currently installed rule with a new
rule tagging the traffic with τk, which succeeds if and only if
the port currently carries the policy tag τk−1 (otherwise, the
port is left untouched). Once all ingress ports are updated, old
rules are removed, one by one, from the internal ports. If πk
happens to be the policy currently proposed by pi, the result
is returned to the application.

Intuitively, a controller blocking a tag τk may still be
involved in installing τk+1 and thus we cannot reuse τk for
a policy other than πk. Otherwise, this controller may later
update a port with an outdated rule, since it might not be
able to distinguish the old policy with tag τk from a new
one using the same tag. But a slow or faulty controller can
block at most one tag; hence, there eventually must be at least
one available tag in {0, . . . , f + 1} − {τk−1} when the first
controller performs its k-th non-trivial pull. In summary, we
have the following result.

Theorem 4: REUSETAG solves the CPC Problem f -
resiliently with tag complexity f + 2 using f -resilient con-
sensus objects.
Proof. We study the termination and consistency properties in
turn.

Termination: Consider any f -resilient execution E of
REUSETAG and let π1, π2, . . . be the sequence of policy
updates as they appear in the linearization of the state-machine
operations in E. Suppose, by contradiction, that a given
process pi never completes its policy update π. Since our
state-machine PS is f -resilient, pi eventually completes its
push(pi, π) operation. Assume π has order k in the total order
on push operations. Thus, pi is blocked in processing some
policy π`, 1 ≤ ` ≤ k, waiting in Lines 3 or 8.

Note that, by the Non-Triviality and Agreement properties
of PS, when a correct process completes installing π`, eventu-
ally every other correct process completes installing π`. Thus,
all correct processes are blocked while processing π. Since
there are at most f faulty processes, at most f tags can be
blocked forever. Moreover, since every blocked process has
previously pushed a policy update, the number of processes
that try to pull proposed policy updates cannot exceed the
number of previously pushed policies. Therefore, by the Non-
Triviality property of PS, eventually, no correct process can
be blocked forever in Line 3.

Finally, every correct process has previously completed
installing policy π`−1 with tag τ`−1. By the algorithm, every

injected packet is tagged with τ`−1 and, eventually, no packet
with a tag other than τ`−1 stays in the network. Thus, no
correct process can be blocked in Line 8—a contradiction,
i.e., the algorithm satisfies the Termination property of CPC.

Consistency: To prove the Consistency property of CPC,
let S be a sequential history that respects the total order
of policy updates determined by the PS. According to
our algorithm, the response of each update in S is ack if
and only if it does not conflict with the set of previously
committed updates in S. Now since each policy update in
S is installed by the two-phase update procedure [3] using
atomic read-modify-write update operations, every packet
injected to the network, after a policy update completes, is
processed according to the composition of the update with
all preceding updates. Moreover, an incomplete policy update
that manages to push the policy into PS will eventually
be completed by some correct process (due to the reliable
broadcast implementation). Finally, the per-packet consistency
follows from the fact that packets will always respect the
global order, and are marked with an immutable tag at the
ingress port; the corresponding forwarding rules are never
changed while packets are in transit. Thus, the algorithm
satisfies the Consistency property of CPC. �

Optimizations and Improvements. A natural optimization of
the REUSETAG algorithm is to allow a controller to broadcast
the outcome of each complete policy update. This way “left
behind” controllers can catch up with the more advanced ones,
so that they do not need to re-install already installed policies.

Note that since in the algorithm, the controllers maintain a
total order on the set of policy updates that respects the order,
we can easily extend it to encompass removals of previously
installed policies. To implement removals, it seems reasonable
to assume that a removal request for a policy π is issued by
the controller that has previously installed π.

Tag Complexity: Lower Bound. The tag complexity of
REUSETAG is, in a strict sense, optimal. Indeed, we now
show that there exists no f -resilient CPC algorithm that uses
f + 1 or less tags in every network. By contradiction, for
any such algorithm we construct a network consisting of
two ingress ports connected to f consecutive loops. We then
present f + 2 composable policies, π0, . . . , πf+1, that have
overlapping domains but prescribe distinct paths. Assuming
that only f + 1 tags are available, we construct an execution
of the assumed algorithm in which an update installing policy
πi invalidates one of the previously installed policies, which
contradicts the Consistency property of CPC.

Theorem 5: For each f ≥ 1, there exists a network such
that any f -resilient CPC algorithm using f -resilient consensus
objects has tag complexity at least f + 2.
Proof. Assume the network Tf of two ingress ports A and B,
and f+1 “loops” depicted in Figure 3 and consider a scenario
in which the controllers apply a sequence of policies defined
as follows. Let πi, i = 1, . . . , f + 1, denote a policy that, for
each of the two ingress ports, specifies a path that in every

π0

... ...
A

B

loop i loop 1loop f+1

πi

Fig. 3. The (f + 1)-loop network topology Tf .

loop ` 6= i takes the upper path and in loop i takes the lower
path (the dashed line in Figure 3). The policy π0 specifies the
path that always goes over the upper parts of all the loops (the
solid line in Figure 3).

We assume that for all i ∈ {0, . . . , f}, we have pr(πi) <
pr(πi+1) and dom(πi) ⊃ dom(πi+1), i.e., all these policies
are composable, and adding policy πi+1 to the composition
π0 · π1 · · ·πi makes the composed policy more refined. Note
that, assuming that only policies πi, i = 0, . . . , f + 1, are in
use, for each injected packet, the ingress port maintains one
rule that tags and forwards it to the next branching port.

Without loss of generality, let 0 be the tag used for the
initially installed π0. By induction on i = 1, . . . , f+1, we are
going to show that any f -resilient CPC algorithm on Tf has a
finite execution Ei at the end of which (1) a composed policy
π0 · π1 · · ·πi is installed and (2) there is a set of i processes,
q1, . . . , qi, such that each qj , j = 1, . . . , i, is about to access
an ingress port with an update operation that, if the currently
installed rule uses j − 1 to tag the injected packets, replaces
it with a rule that uses j instead.

For the base case i = 1, assume that some controller
proposes to install π1. Since the network initially carries traffic
tagged 0, the tag used for the composed policy π0 · π1 must
use a tag different from 0, without loss of generality, we call
it 1. There exists an execution in which some controller q1 has
updated the tag on one of the ingress port with tag 1 and is
just about to update the other port. Now we “freeze” q1 and
let another controller complete the update of the remaining
ingress port. Such an execution exists, since the protocol is
f -resilient (f > 0) and, by the Consistency and Termination
properties of CPC, any update that affected the traffic must
be eventually completed. In the resulting execution E1, q1 is
about to update an ingress port to use tag 1 instead of 0 and
the network operates according to policy π0 · π1.

Now consider 2 ≤ i ≤ f + 1 and, inductively, con-
sider the execution Ei−1. Suppose that some controller in
Π − {q1, . . . , qi−1} completes its ongoing policy update and
now proposes to install πi. Similarly, since the algorithm is
f -resilient (and, thus, (i − 1)-resilient), there is an extension
of Ei−1 in which no controller in {q1, . . . , qi−1} takes a step
after Ei−1 and eventually some controller qi /∈ {q1, . . . , qi−1}
updates one of the ingress ports to apply π0 · · ·πi so that
instead of the currently used tag i − 1 a new tag τ is used.
(By the Consistency property of CPC, πi should be composed
with all policies π0, . . . , πi−1.)

Naturally, the new tag τ cannot be i− 1. Otherwise, while
installing π0 · · ·πi, either qi updates port i before port i − 1
and some packet tagged i would have to take lower paths in
both loops i and i − 1 (which does not correspond to any
composition of installed policies), or qi updates port i − 1
before i and some packet would have to take no lower paths
at all (which corresponds to the policy π0 later overwritten by
π0 · · ·πi−1).

Similarly, τ /∈ {0, . . . , i− 2}. Otherwise, once the installa-
tion of π0 · · ·πi by qi is completed, we can wake up controller
qτ+1 that would replace the rule of tag τ with a rule using tag
τ + 1, on one of the ingress ports. Thus, every packet injected
at the port would be tagged τ + 1. But this would violate the
Consistency property of CPC, because π0 · · ·πi using tag τ is
the most recently installed policy.

Thus, qi, when installing π0 · · ·πi, must use a tag not in
{0, . . . , i − 1}, say i. Now we let qi freeze just before it is
about to install tag i on the second ingress port it updates.
Similarly, since π0 · · ·πi affected the traffic already on the
second port, there is an extended execution in which another
controller in Π − {q1, . . . , qi} completes the update and we
get the desired execution Ei. In Ef+1 exactly f + 2 tags are
concurrently in use, which completes the proof. �

V. IMPOSSIBILITY FOR WEAKER PORT MODEL

It turns out that it is impossible to update a network consis-
tently in the presence of even one crash failure, which justifies
our assumption that SDN ports support atomic read-modify-
write operations. To prove this impossibility, we assume here
that a port can only be accessed with two atomic operations:
read that returns the set of rules currently installed at the port
and write that updates the state of the port with a new set of
rules.

Theorem 6: There is no solution to CPC using consensus
objects that tolerates one or more crash failures.
Proof. By contradiction, assume that there is a 1-resilient
CPC algorithm A using consensus objects. Consider a network
including two ingress ports, 1 and 2, initially configured to
forward all the traffic to internal ports (we denote this policy
by π0). Let controllers p1 and p2 accept two policy-update re-
quests apply1(π1) and apply2(π2), respectively, such that π1 is
refined by π2, i.e., pr(π2) > pr(π1) and dom(π2) ⊂ dom(π1),
and paths stipulated by the two policies to ingress ports 1 and
2 satisfy π(1)

1 6= π
(1)
2 and π(2)

1 6= π
(2)
2 .

Now consider an execution of our 1-resilient algorithm
in which p1 is installing π1 and p2 takes no steps. Since
the algorithm is 1-resilient, p1 must eventually complete the
update even if p2 is just slow and not actually faulty. Let us
stop p1 after it has configured one of the ingress ports, say 1,
to use policy π1, and just before it changes the state of ingress
port 2 to use policy π1. Note that, since p1 did not witness a
single step of p2, the configuration it is about to write to port
2 only contains the composition of π0 and π1.

Now let a given packet in dom(π1) arrive at port 1 and be
processed according to π1. We extend the execution with p2

installing π2 until both ports 1 and 2 are configured to use the
composition π0 · π1 · π2. Such an execution exists, since the
algorithm is 1-resilient and π1 has been already applied to one
packet. Therefore, by sequential composability, the sequential
equivalent of the execution, both apply1(π1) and apply2(π2)
must appear as committed in the equivalent sequential history.

But now we can schedule the enabled step of p1 to
overwrite the state of port 2 with the “outdated” configuration
that does not contain π2. From now on, every packet in
dom(π2) injected at port 2 is going to be processed according
to π1—a contradiction to sequential composability. �

VI. RELATED WORK

Distributed SDN Control Plane. We are not the first to study
distributed designs of the logically centralized SDN control
plane. Indeed, the perception that control in SDN is centralized
leads to concerns about SDN scalability and resiliency, which
can be addressed with distributed control plane designs [13].
Onix [14] is among the earliest distributed SDN controller
platforms. Onix applies existing distributed systems techniques
to build a Network Information Base (NIB), i.e., a data
structure that maintains a copy of the network state, and
abstracts the task of network state distribution from control
logic. However, Onix expects developers to provide the logic
that is necessary to detect and resolve conflicts of network state
due to concurrent control. In contrast, we study concurrent
policy composition mechanisms that can be leveraged by any
application in a general fashion. There are also several studies
on the design of spatially distributed control planes, where
different controllers handle frequent and latency critical events
closer to their origin in the dataplane, in order to improve
scalability and latency [15]–[17]. ElastiCon [18] proposes an
elastic distributed controller architecture. We in this paper, in
contrast, do not consider spatial optimizations but focus on
robustness aspects.
Network Updates and Policy Composition. The question
of how to consistently update networks has recently attracted
much attention. Reitblatt et al. [3] formalized the notion of
per-packet consistency and introduced the problem of con-
sistent network update for the case of a single controller.
Mahajan and Wattenhofer [19] considered weaker transient
consistency guarantees, and proposed more efficient network
update algorithms accordingly. Ludwig et al. [20] studied
algorithms for secure network updates where packets are
forced to traverse certain waypoints or middleboxes. Ghorbani
et al. [21] recently argued for the design of network update
algorithms that provide even stronger consistency guarantees.
Finally, our work in [5] introduced the notion of software
transactional networking, and sketched a tag-based algorithm
to consistently compose concurrent network updates that fea-
tures an exponential tag complexity not robust to any controller
failure.
Distributed Computing. There is a long tradition of defining
correctness of a concurrent system via an equivalence to a

sequential one [12], [22], [23]. The notion of sequentially
composable histories is reminiscent of linearizability [12],
where a history of operations concurrently applied by a
collection of processes is equivalent to a history in which the
operations are in a sequential order, respecting their real-time
precedence. In contrast, our sequentially composable histories
impose requirements not only on high-level invocations and
responses, but also on the way the traffic is processed. We
require that the committed policies constitute a conflict-free
sequential history, but, additionally, we expect that each path
witnesses only a prefix of this history, consisting of all requests
that were committed before the path was initiated. The trans-
actional interface exported by the CPC abstraction is inspired
by the work on speculative concurrency control using software
transactional memory (STM) [4]. Our interface is however
intended to model realistic network management operations,
which makes it simpler than recent dynamic STM models [24].
Also, we assumed that controllers are subject to failures, which
is usually not assumed by STM implementations.

VII. CONCLUDING REMARKS

We believe that our paper opens a rich area for future
research, and we understand our work as a first step towards
a better understanding of how to design and operate a robust
SDN control plane. As a side result, our model allows us to
gain insights into minimal requirements on the network that
enable consistent policy updates: e.g., we prove that consistent
network updates are impossible if SDN ports do not support
atomic read-modify-write operations.

Our FIXTAG and REUSETAG algorithms highlight the fun-
damental trade-offs between the concurrency of installation
of policy updates and the overhead on messages and switch
memories. Indeed, while being optimal in terms of tag com-
plexity, REUSETAG essentially reduces to installing updates
sequentially. Our initial concerns were resilience to failures
and overhead, so our definition of the CPC problem did not
require any form of “concurrent entry” [25]. But it is important
to understand to which extent the concurrency of a CPC
algorithm can be improved, and we leave it to future research.
For instance, it may be interesting to combine FIXTAG and
REUSETAG, in the sense that the fast FIXTAG algorithm could
be used in sparse areas of the network, while the dynamic tag
reuse of REUSETAG is employed in dense areas.

Another direction for future research regards more complex,
non-commutative policy compositions: while our protocol can
also be used for, e.g., policy removals, it will be interesting to
understand how general such approaches are.

As was recently suggested by Casado et al. [7], maintaining
consistency in network-wide structures and distributed up-
dates, as well as providing the ability of modular composition
and formal verification of network programs, are becoming
principal SDN challenges. Our suggestion to provide control
applications with a transactional interface [5] appears to be an
adequate way to address these challenges: transactions provide
the illusion of atomicity of updates and reads, can be easily
composed, and allow for automated verification.

Acknowledgments

This research is (in part) supported by the EIT project
Mobile SDN, by the ARC grant 13/18-054 from Communauté
française de Belgique, and by European Union’s Horizon 2020
research and innovation programme under the ENDEAVOUR
project (grant agreement 644960). We would like to thank
Yehuda Afek and Roy Friedman for interesting discussions.

REFERENCES

[1] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthy,
“Participatory Networking: An API for Application Control of SDNs,”
in SIGCOMM, 2013.

[2] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic Foundations for
Networks,” in POPL, 2014.

[3] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for Network Update,” in SIGCOMM, 2012.

[4] N. Shavit and D. Touitou, “Software transactional memory,” Distributed
Computing, 1997.

[5] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “Software Transac-
tional Networking: Concurrent and Consistent Policy Composition,” in
HotSDN, 2013.

[6] M. Herlihy, “Wait-free Synchronization,” ACM Trans. Program. Lang.
Syst., vol. 13, no. 1, 1991.

[7] M. Casado, N. Foster, and A. Guha, “Abstractions for Software-Defined
Networks,” Commun. ACM, vol. 57, no. 10, 2014.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” vol. 32, no. 2, 1985.

[9] D. Dolev, C. Dwork, and L. Stockmeyer, “On the Minimal Synchronism
Needed for Distributed Consensus,” vol. 34, no. 1, Jan. 1987.

[10] T. D. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest Failure
Detector for Solving Consensus,” vol. 43, no. 4, Jul. 1996.

[11] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui, “Tight Failure
Detection Bounds on Atomic Object Implementations,” J. ACM, vol. 57,
no. 4, 2010.

[12] M. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition
for Concurrent Objects,” ACM Trans. Program. Lang. Syst., vol. 12,
no. 3, pp. 463–492, 1990.

[13] S. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On Scalability
of Software-Defined Networking,” Communications Magazine, IEEE,
vol. 51, no. 2, 2013.

[14] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix:
A Distributed Control Platform for Large-scale Production Networks,”
in OSDI, 2010.

[15] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in HotSDN, 2012.

[16] B. Heller, R. Sherwood, and N. McKeown, “The Controller Placement
Problem,” in HotSDN, 2012.

[17] S. Schmid and J. Suomela, “Exploiting Locality in Distributed SDN
Control,” in HotSDN, 2013.

[18] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella,
“Towards an Elastic Distributed SDN Controller,” in HotSDN, 2013.

[19] R. Mahajan and R. Wattenhofer, “On Consistent Updates in Software
Defined Networks,” in HotNets, 2013.

[20] A. Ludwig, M. Rost, D. Foucard, and S. Schmid, “Good Network
Updates for Bad Packets: Waypoint Enforcement Beyond Destination-
Based Routing Policies,” in HotNets, 2014.

[21] S. Ghorbani and B. Godfrey, “Towards Correct Network Virtualization,”
in HotSDN, 2014.

[22] C. H. Papadimitriou, “The Serializability of Concurrent Database Up-
dates,” J. ACM, vol. 26, 1979.

[23] L. Lamport, “How to Make a Multiprocessor Computer that Correctly
Executes Multiprocess Programs,” vol. 28, no. 9, 1979.

[24] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Software
Transactional Memory for Dynamic-sized Data Structures,” in PODC,
2003.

[25] Y.-J. Joung, “Asynchronous group mutual exclusion,” Distributed Com-
puting, vol. 13, no. 4, 2000.

