
On the Resiliency of Randomized Routing
Against Multiple Edge Failures *

Marco Chiesa1, Andrei Gurtov2,5, Aleksander Ma̧dry3, Slobodan Mitrović4,
Ilya Nikolaevskiy5, Michael Schapira6, and Scott Shenker7,8

1 Université catholique de Louvain, Belgium
2 Helsinki Institute for Information Technology, Finland
3 Massachusetts Institute of Technology, US
4 École Polytechnique Fédérale de Lausanne, Switzerland
5 Aalto University, Department of Computer Science, Finland
6 Hebrew University of Jerusalem, Israel
7 University of California, Berkeley, US
8 International Computer Science Institute, US

Abstract
We study the Static-Routing-Resiliency problem, motivated by routing on the Internet: Given a graph

G = (V, E), a unique destination vertex d, and an integer constant c > 0, does there exist a static and
destination-based routing scheme such that the correct delivery of packets from any source s to the destin-
ation d is guaranteed so long as (1) no more than c edges fail and (2) there exists a physical path from s to
d? We embark upon a study of this problem by relating the edge-connectivity of a graph, i.e., the minimum
number of edges whose deletion partitions G, to its resiliency. Following the success of randomized rout-
ing algorithms in dealing with a variety of problems (e.g., Valiant load balancing in the network design
problem), we embark upon a study of randomized routing algorithms for the Static-Routing-Resiliency
problem. For any k-connected graph, we show a surprisingly simple randomized algorithm that has ex-
pected number of hops O(|V|k) if at most k-1 edges fail, which reduces to O(|V|) if only a fraction t of the
links fail (where t < 1 is a constant). Furthermore, our algorithm is deterministic if the routing does not
encounter any failed link.

1998 ACM Subject Classification C.2.2 Network Protocols

Keywords and phrases Randomized, Routing, Resilience, Connectivity, Arborescenses

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.XXX

1 Introduction

Routing on the Internet (both within an organizational network and between such networks) typically
involves computing a set of destination-based routing tables (i.e., tables that map the destination IP
address of a packet to an outgoing link). Whenever a link or node fails, routing tables are recomputed
by invoking the routing protocol to run again (or having it run periodically, independent of failures).
This produces well-formed routing tables, but results in relatively long outages after failures as the
protocol is recomputing routes.

As critical applications began to rely on the Internet, such outages became unacceptable. As a
result, “fast failover” techniques have been employed to facilitate immediate recovery from failures.

* Additional details of the results in this note appear in [9]. This research was supported in part by European Union’s
Horizon 2020 research and innovation programme under the ENDEAVOUR project (grant agreement 644960),
by Swiss National Science Foundation (grant number P1ELP2_161820), the NSF award 1553428, and a Sloan
Research Fellowship.

© Marco Chiesa, Andrei Gurtov, Aleksander Ma̧dry, Slobodan Mitrović, Ilya Nikolaevskiy, Michael Schapira, Scott Shenker;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi; Article No. XXX; pp. XXX:1–XXX:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.XXX
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XXX:2 On the Resiliency of Randomized Routing Against Multiple Edge Failures

The most well-known of these is Fast Reroute in MPLS where, upon a link failure, packets are sent
along a precomputed alternate path without waiting for the global recomputation of routes [23].
This, and other similar forms of fast failover thus enable rapid response to failures but are limited
to the set of precomputed alternate paths. Most of existing approaches protect only from a single
failure, however in many scenarios (e.g. overlay networks [11], highly-connected large datacenter
networks [15]) multiple failures at the same time may be a common occurrence.

The goal of this paper is to perform a theoretical study of failover routing. The fundamental
question is, how resilient can failover routing be? That is, how many link failures can failover
routing schemes tolerate before connectivity is interrupted (i.e., packets are trapped in a forwarding
loop, or hit a dead end)? The answer to this question depends on both the structural properties of the
graph, and the limitations imposed on the routing scheme.

Clearly, if it is possible to store arbitrary amount of information in the packet header, perfect
resiliency can be achieved by collecting information about every failed link that is hit by a packet [19,
26]. Such approaches are not feasibly deployable in modern-day networks as the header of a packet
may be too large for today’s routing tables. Our focus is thus on failover routing schemes that do not
involve any change in the packet headers. Another traditional approach to achieving high resiliency
is implementing stateful routing, i.e., storing information at a node every time a packet is seen being
received from a different incoming link (see, e.g., link reversal [14] and other approaches [20, 21]).
As current routing protocols do not allow network operators to implement such stateful failover
routing, our goal is to design protocols that correspond to a stateless, or static, failover routing.

Specifically, we consider a particularly simple and practical form of static failover routing: for
each incoming link, a router maintains a destination-based routing table that maps the destination
address of a packet and the set of non-failed (“active”) links, to an output link. The router can
locally detect which outgoing links are down and forwards packets accordingly. One should note
that maintaining such per-incoming-link destination-based routing tables is necessary; not only is
destination-based routing unable to achieve robustness against even a single link failure [18], but it
is even computationally hard to devise failover routing schemes that maximize the number of nodes
that are protected [2, 5, 18, 24]. We only consider link failures, not router failures (which are not
always detectable by neighboring routers, and so such fast failover techniques may not apply).

A failover routing algorithm is responsible for computing, for each node (vertex) of a network
(graph), a routing function that matches an incoming packet to an outgoing edge. A set of such
routing functions for each vertex guarantees reachability between a pair of vertices, u and v, for
which there exists a connecting path in the graph, if any packet directed to node v originated at node
u is correctly routed from u to v.

We are interested in routing functions that rely solely on information that is locally available at
a node (e.g., the set of non-failed edges, the incoming link along which the packet arrived, and any
information stored in the header of the packet).

While it is known that every k-connected network cannot be partitioned by deleting at most
k−1 links, it is not known whether any static “deterministic” routing (i.e., the outgoing port of each
packet is always uniquely determined at a vertex v by its incoming link and the failed edges incident
at v) achieves such resiliency.

On the other hand, routing based on random walks, i.e., choosing the outgoing link at random,
achieves the best possible resilience as they will eventually deliver a packet to the destination as long
as the network is connected. But, it comes with a huge cost. Namely, a random walk might traverse
the whole network even when there is no single failed link. In fact, the expected delivery time of a
packet would be as large as Θ(|V |3) in some network topologies [6]. Furthermore, a random walk
almost never reaches the destination following the shortest path. So, although extremely robust,
when it comes to the time needed to deliver a packet to the destination, the behaviour of random

Chiesa et. al. XXX:3

walks is undesirable.

1.1 Our Results

In this paper, we show how randomness can be used to achieve k−1 resilient routing in k-connected
networks while significantly outperforming random walks in terms of number of traversed nodes.
Namely, we introduce Randomized failover routing (RND) in which outgoing edge is chosen for
packets in a probabilistic manner based on the destination label, the incoming edge, and the set of
non-failed edges. The randomized protocol that we present provides bound on the expected delivery
time that gracefully grows with the number of actual link failures.

Our randomized routing functions provide delivery in case of any k − 1 link failures for any k-
connected graph. We achieve that by leveraging the standard decomposition of k-connected graphs
into k arc-disjoint spanning arborescences T [10]. We also provide a bound on the expected number
of hops that our algorithm performs, which isO(Hk) for any k−1 failures andO(H) for αk failures,
where H is the length of the longest branch of any arborescence of T and α < 1 is a constant.
Furthermore, our routing functions are deterministic as long as the routing does not encounter any
failure. Hence, packets belonging to the same logical connection are routed along the same path,
minimizing reordering complexity at the receiver side.

Motivated by the fact that one can protect against k − 1 failures in k-connected graphs using
randomness, we make the following general conjecture, whose proof eludes us despite much effort.

Conjecture: For any k-connected graph, one can find deterministic failover routing functions
that are robust to any k − 1 failures.

1.2 Organization

The rest of the paper is organized as follows. Section 2 provides background on existing works. In
Section 3, we introduce our routing model and formally state the STATIC-ROUTING-RESILIENCY

problem. The summary of our routing techniques that are leveraged throughout the whole paper
are presented in Section 4. In Section 5, we focus on studying the relation between arborescences
our input graph decomposes into and failed links. Section 6 builds on Section 5 and is devoted to
designing an algorithm that, for any k-connected graph, computes randomized routing functions that
are robust to k − 1 edge failures and have bounded expected delivery time.

2 Related Work

Past work [1, 29] (1) designed such routing functions with guaranteed robustness against only a
single link/node failure [12, 13, 22, 28, 30, 32], (2) achieved robustness against bk2 −1c edge failures
for k-connected graphs [11], and (3) proved that it is impossible to be robust against any set of edge
failures that does not partition the network [13].

Thanks to its flexibility and oblivious behavior, another line of study was motivated by ran-
domization. Namely, some of the previous work developed randomized routing schemes, usually to
directly or indirectly achieve low congestion and/or balance the network load. In particular, Busch et
al. [7] use randomization to adjust packet priorities, which in turn allows them to control deflection
of packets.

Valiant [27] proposed a randomized routing algorithm with the goal to balance the load of the
underlying network. Since then, that scheme is called Valiant Load-Balancing (VLB), whose one of
the main ingredients is randomization. VLB was extensively used in designing networks. Zhang-
Shen et al. [31] employed VLB to design fault-tolerant networks with guaranteed no congestion

ICALP 2016

XXX:4 On the Resiliency of Randomized Routing Against Multiple Edge Failures

under few router or link failures. Greenberg et al. [16] adopt VLB to reduce volatility of traffic
and failure pattern of their data centers. In [25], Shepherd et al. extend VLB in order to build
cost-effective networks robust to changes in demand patterns.

Beraldi [3] presents a search protocol for mobile networks that is based on modified random
walks, i.e. based on biased random walks with look-ahead. Motivated by the success of ant-colonies
in their search for food, Günes et al.[17] studied ant algorithms, which in their heart rely on random-
ization, as an approach to designing on-demand ad-hoc routing algorithms.

Chiesa et al. [8] studied resilience under link failures in k-connected networks. They devise static
routing schemes that are resilient under k− 1 failures in the following regimes: (1) if the routers are
allowed to use three bits in the packet header for read/write operation, or (2) if the network supports
broadcasting. A building block of those schemes is the result that every k-connected graph contains
k arc-disjoint arborescences rooted at the same vertex [10].

3 Model

We represent our network as an undirected multigraph G = (V (G), E(G)), where each router in
the network is modeled by a vertex in V (G) and each link between two routers is modeled by an
undirected edge in the multiset E(G). When it is clear from the context, we simply write V and E
instead of V (G) and E(G). We denote an (undirected) edge between x and y by {x, y}. A graph is
k-edge-connected if there exist k edge-disjoint paths between any pair of vertices of G.

Each vertex v routes packets according to a routing function that matches an incoming packet
to a sequence of forwarding actions. Packet matching is performed according to the set of active
(non-failed) edges incident at v, the incoming edge, and any information stored in the packet header
(e.g., destination label, extra bits), which all are locally available at a vertex.

Since our focus is on per-destination routing functions, we assume that there exists a unique des-
tination d ∈ V to which every other vertex wishes to send packets and, therefore, that the destination
label is not included in the header of a packet. Forwarding actions consist of routing packets through
an outgoing edge, rewriting some bits in the packet header, and creating duplicates of a packet.

In this paper we consider randomized routing functions, in which a vertex forwards a packet
through an outgoing edge with a probability based only on the incoming port and the set of active
outgoing edges. We present the formal definitions of the randomized routing model in Section 6.

The STATIC-ROUTING-RESILIENCY (SRR) problem. Given a graph G, a routing function f is
k-resilient if, for each vertex v ∈ V , a packet originated at v and routed according to f reaches its
destination d as long as at most k edges fail and there still exists a path between v and d. The input
of the SRR problem is a graph G, a destination d ∈ V (G), and an integer k > 0, and the goal is to
compute a set of resilient routing functions that is k-resilient.

4 General Routing Techniques and Randomized Algorithm

Definition and notation. We denote a directed arc from x to y by (x, y) and by ~G the directed copy
of G, i.e. a directed graph such that V (~G) = V and {x, y} ∈ E if and only if (x, y), (y, x) ∈ E(~G).
A subgraph T of ~G is an r-rooted arborescence of ~G if (i) r ∈ V , (ii) V (T) ⊆ V , (iii) r is the
only vertex without outgoing arcs and (iv), for each v ∈ V (T) \ {r}, there exists a single directed
path from v to r that only traverses vertices in V (T). If V (T) = V , we say that T is a r-rooted
spanning arborescence of ~G. When it is clear from the context, we use the word “arborescence”
to refer to a d-rooted spanning arborescence, where d is the destination vertex. We say that two
arborescences T1 and T2 are arc-disjoint if (x, y) ∈ E(T1) =⇒ (x, y) /∈ E(T2). A set of l
arborescences {T1, . . . , Tl} is arc-disjoint if the arborescences are pairwise arc-disjoint. We say that

Chiesa et. al. XXX:5

a

b

d

c

Figure 1 A 3-connected
graph with 3 arc-disjoint arbor-
escences colored red, blue, and
green.

v20 v21 v22 v23

v10 v11 v12 v13

d

T0

T1

T2

T3

Figure 2 Graph used in the proof of Theorem 7 for k = 2.

two arc-disjoint arborescences T1 and T2 do not share an edge {x, y} ∈ E if (x, y) ∈ E(T1) =⇒
(y, x) /∈ E(T2).

For example, consider Fig. 1, in which each pair of nodes is connected by an edge (ignore the
red crosses) and three arc-disjoint (d-rooted spanning) arborescences Red, Green, and Blue are
depicted by colored arrows.
Arborescence-based routing. Throughout the paper, unless specified otherwise, we let T =
{T1, . . . , Tk} denote a set of k d-rooted arc-disjoint spanning arborescences of ~G. All our routing
techniques are based on a decomposition of ~G into T . The existence of k arc-disjoint arborescences
in any k-connected graph was proven in [10], while fast algorithms to compute such arborescences
can be found in [4]. We say that a packet is routed in canonical mode along an arborescence T if a
packet is routed through the unique directed path of T towards the destination. If the packet hits a
failed edge at vertex v along T , it is processed by v (e.g., duplication, header-rewriting) according
to the capabilities of a specific routing function and it is rerouted along a different arborescence. We
call such routing technique arborescence-based routing. One crucial decision that must be taken is
the next arborescence to be used after a packet hits a failed edge. In this paper, we propose two
natural choices that represent the building blocks of all our routing functions. When a packet is
routed along Ti and it hits a failed arc (v, u), we consider the following two possible actions:

Reroute along some available arborescence, e.g., reroute along T ′, where T ′ is chosen ran-
domly from distribution that we define in the sequel. Observe that, if the outgoing arc belonging
to T ′ failed, we randomly pick another arborescence T ′′, and so on.

Bounce on the reversed arborescence, i.e., we reroute along the arborescence Tnext that con-
tains arc (u, v).

To grasp how bouncing enters in our picture for obtaining k−1 resiliency, consider the following
case. Assume that in the network there are k/2 failed links, such that every single out of k arbores-
cences contains one of the links. (As a reminder, arborescences that we construct might share links,
but not arcs.) So, this example might suggest that there are scenarios in which already k/2 failed
links make all the arborescences not very useful, and that no algorithm can cope with that. But, there
is a twist. Let k = 2, and Ti and Tj be the two arborescences and let them share the same failed
edge a. Furthermore, let a be the only failed edge Ti and Tj contain. If a packet hits a while routed
along Ti or Tj , then after bouncing on a the packet will reach d without any further interruption! So,
we have just found a way to resolve a case in which every arborescence contains one failed link, and
that is not an isolated scenario, as we discuss in the sequel.

From a different point of view, bouncing is a way of recycling arborescences that contain one
failed link. This observation is crucial to obtain an efficient and a simple randomized (k − 1)-

ICALP 2016

XXX:6 On the Resiliency of Randomized Routing Against Multiple Edge Failures

resilient routing scheme, which we are now ready to present. The algorithm is parametrized by q
that we define later.

Algorithm 1 Definition of RAND-BOUNCING-ALGO.
RAND-BOUNCING-ALGO: Given T = {T1, . . . , Tk}
1. T := an arborescence from T sampled uniformly at random (u.a.r.)
2. While d is not reached

1. Route along T (canonical mode)
2. If a failed edge is hit then

(a) With probability q, replace T by an arborescence from T sampled u.a.r.
(b) Otherwise, bounce the failed edge and update T correspondingly

In the following sections, we first study the connection between arborescences of T and failed
links, and show how a part of their intricate interaction can be represented in a simple and an elegant
way via, so-called, meta-graph. Afterwards, we show the RAND-BOUNCING-ALGO is (k − 1)-
resilient and we analyze its efficiency.

5 Meta-graph, Good Arcs, and Good Arborescences

The goal of this section is to provide an understanding of the structural relation between the ar-
borescences of T when the underlying k-connected network has at most k − 1 failed edges. The
perspective that we are building here drives the construction of our randomized algorithm.

We start by introducing the notion of a meta-graph. To that end, we fix an arbitrary set of failed
edges F . Throughout the section, we assume |F | < k, and define f := |F |. Then, we define a
meta-graph HF = (VF , EF) as follows:

VF = {1, . . . , k}, where vertex i is a representative of arborescence Ti.
For each failed edge e ∈ E belonging to at least one arborescences of T we define the corres-
ponding edge eF in HF in the following way:

eF := {i, j}, if e belongs to two different arborescences Ti and Tj ;
eF := {i, i}, i.e. eF is a self-loop, if e belongs to a single arborescence Ti only.

Note that in our constructionHF might contain parallel edges. Intuitively, the meta-graph represents
a relation between arborescences of T for a fixed set of failed edges. We provide the following
lemma as the first step towards understanding the structure of HF .

I Lemma 1. The set of connected components of HF contains at least k − f trees.

Proof. We give a proof by contradiction. To that end, assume that the set of connected components
of HF , denoted by C, contains at most k − f − 1 trees. Now, if C ∈ C is a tree, we have |E(C)| =
|V (C)| − 1, and |E(C)| ≥ |V (C)| otherwise. We also have∑

C∈C
|E(C)| =

∑
C∈C is not a tree

|E(C)|+
∑

C∈C is a tree

|E(C)|

≥
∑

C∈C is not a tree

|V (C)|+
∑

C∈C is a tree

(|V (C)| − 1). (1)

Next, following our assumption that C contains at most k − f − 1 trees, from (1) we obtain∑
C∈C
|E(C)| ≥

∑
C∈C
|V (C)| − (k − f − 1). (2)

Chiesa et. al. XXX:7

Furthermore, as by the construction we have
∑
C∈C |V (C)| = |VF | = k, (2) implies∑

C∈C
|E(C)| ≥ |VF | − (k − f − 1) = f + 1. (3)

On the other hand, from the construction of HF we have∑
C∈C
|E(C)| = f,

which leads to a contradiction with (3). J

Lemma 1 implies that the fewer failed edges there are, the larger fraction of connected compon-
ents of the meta-graph HF are trees. Note that an isolated vertex is a tree as well.

In the sequel, we show that each tree-component of HF contains at least one vertex correspond-
ing to an arborescence from which any bounce on a failed edge leads to the destination d without
hitting any new failed edge. To that end, we introduce the notion of good arcs and good arbores-
cences. We say that an arc (u, v) is a good arc of an arborescence T if on the (unique) v-d path
in T there is no failed edge. Let a = (i, j), for i 6= j, be an arc of ~HF , {u, v} be the edge that
corresponds to a, and w.l.o.g. assume (u, v) is an arc of Tj . Then, we say a is a well-bouncing arc if
(u, v) is a good arc of Tj . Intuitively, a well-bouncing arc (i, j) of ~HF means that by bouncing from
Ti to Tj on the failed edge {v, u} the packet will reach d via routing along Tj without any further
interruption. Finally, we say that an arborescence Ti is a good arborescence if every outgoing arc of
vertex i ∈ VF is well-bouncing.

I Lemma 2. Let T be a tree-component of HF s.t. |V (T)| > 1. Then, ~T contains at least |V (T)|
well-bouncing arcs.

Proof. Let Ti be an arborescence of T such that i ∈ V (T). Then, by the construction of HF

we have that Ti contains a failed link. Next, a failed link closest to the root of Ti is a good arc of
Ti. Therefore, for every i ∈ V (T), we have that Ti contains an arc which is both good and failed.
Furthermore, by the construction of HF and the definition of well-bouncing arcs, we have that for
every good, failed link of Ti there is the corresponding well-bouncing arc of ~T . Also, observe that
the construction of HF implies that a well-bouncing arc corresponds to exactly one good-arc.

Now, putting all the observations together, we have that each Ti, for every i ∈ V (T), has a
good failed link which further corresponds to a well-bouncing arc of ~T . As all the arborescences are
arc-disjoint, and there are |V (T)| many of them represented by the vertices of T , we have that ~T
contains at least |V (T)| well-bouncing arcs. J

Now, building on Lemma 2, we prove the following.

I Lemma 3. Let T be a tree-component of HF . Then, there is an arborescence Ti such that
i ∈ V (T) and Ti is good.

Proof. Consider two cases: |V (T)| = 1, and |V (T)| > 1. In the case |V (T)| = 1, T is an isolated
vertex which implies that it has no outgoing arcs. Therefore, T represents a good arborescence.

If |V (T)| > 1, then from Lemma 2 we have that ~T contains at most 2(|V (T)| − 1)− |V (T)| <
|V (T)| arcs which are not well-bouncing. This implies that there is at least one vertex in T from
which every outgoing arc is well-bouncing. J

Let us understand what this implies. Consider an arborescence Ti, and a routing of a packet
along it. In addition, assume that the routing hits a failed edge e, such that e is shared with some
other arborescence Tj . Now, if e corresponds to a well-bouncing arc of ~HF , then by bouncing on

ICALP 2016

XXX:8 On the Resiliency of Randomized Routing Against Multiple Edge Failures

e and routing solely along Tj , the packet will reach d without any further interruption. Lemma 3
claims that for each tree-component T ofHF there always exists an arborescence Ti, with i ∈ V (T),
which is good, i.e. every failed edge of Ti corresponds to a well-bouncing arc of ~HF .

We can now state the main lemma of this section.

I Lemma 4. If G contains at most k − 1 failed edges, then T contains at least one good arbores-
cence.

Proof. We prove that there exists an arborescence Ti such that if a packet bounces on any failed
edge of Ti it will reach d without any further interruption. Let F be the set of failed edges, at most
k − 1 of them. Then, by Lemma 1 we have that HF contains at least k − f ≥ 1 tree-components.
Let T be one such component.

By Lemma 3, we have that there exists at least an arborescence Ti such that every outgoing arc
from i is well-bouncing. Therefore, bouncing on any failed arc of Ti the packet will reach d without
any further interruption. J

6 Randomized Routing via Good Arborescences

In this section, we show that a set of routing functions for G obtained by RAND-BOUNCING-ALGO

is (k − 1)-resilient. Note that our routing function (RND) maps an incoming edge and the set of
active edges incident at v to a set of pairs (e, q), where e is an outgoing edge and q is the probability
of forwarding a packet through e. A packet is forwarded through a unique outgoing edge.

The section is structured as follows. As a prelude, we show a simple, yet inefficient, randomized
routing algorithm, called RAND-ALGO, that although is (k−1)-resilient, fails to achieve low expec-
ted number of hops in case of k − 1 failed edges. We then apply our results from Section 5 to show
that RAND-BOUNCING-ALGO is both (k− 1)-resilient and requires up to an order fewer number of
hops, compared to RAND-ALGO, to reach the destination.

6.1 A Simple (Inefficient) Randomized Routing

Consider the following naive randomized algorithm RAND-ALGO for routing along arborescences.
A packet is routed along the same arborescence until it either reaches its destination or hits a failed
edge. In the latter case, it is rerouted along another arborescences chosen uniformly at random. We
show that there exists a k-connected graph and a set of failed edges such that the expected number
of tree switches that RAND-ALGO makes is Ω(k2). This further implies that the expected number of
hops is Ω(Hk2) in the worst case, where H is the length of a longest path in any arborescence and
assuming that longest path in all the arborescences are up to a constant factor the same.

To prove the promised bound, we start by defining a 2k edge connected graph G = (V,E) and
its set of 2k arc disjoint spanning trees T0, . . . , T2k−1 as follows.

Set V consists of a destination vertex d and 4k additional vertices arranged into two equal-sized
layers L1 = {v1

0 , . . . , v
1
2k−1} and L2 = {v2

0 , . . . , v
2
2k−1}.

Set E is defined by the following four subgraphs: (1) L2 is a clique of size 2k; (2) (L1, L2) is
a complete bipartite graph; (3) for each k = 0, . . . , k − 1, there is an edge (v1

2i, v
1
2i+1) and (4)

vertex d is connected to each vertex of L1. There is no other edge included in G.
Next, we construct 2k arc-disjoint spanning trees T0, . . . , T2k−1 (see Fig. 2 for an example with
k = 2). We use [t]0 to denote set {0, 1, 2, . . . , t− 1}.

For each i ∈ [k]0, add the following arcs:

(v2
2i+1, v

2
2i), (v2

2i, v
1
2i), (v1

2i, v
1
2i+1), and (v1

2i+1, d) into T2i+1;

Chiesa et. al. XXX:9

arcs (v2
2i, v

2
2i+1), (v2

2i+1, v
1
2i+1), (v1

2i+1, v
1
2i), and (v1

2i, d) into T2i.

For each i ∈ [k]0, and for each j ∈ [2k]0 \ {2i, 2i+ 1}, add the following arcs:

(v2
j , v

2
2i), and (v1

j , v
2
2i) into T2i;

(v2
j , v

2
2i+1), and (v1

j , v
2
2i+1) into T2i+1.

Finally, consider a scenario in which edges (v2
0 , v

2
1), (v2

2 , v
2
3), . . . , (v2

2k−4, v
2
2k−3) and (v1

0 , v
1
1),

(v1
2 , v

1
3), . . . , (v1

2k−4, v
1
2k−3), (v1

2k−2, v
1
2k−1) failed.

We say that a packet is routed downwards (upwards) if it is routed from a vertex in L2 (L1) to a
vertex in L1 (L2). Let Ed be the expected number, minimized over all the vertices, of tree switches
of a packet that is routed downwards, Eu be the expected number of tree switches of a packet that
is routed along Ti and is currently located at v2

i , for some i ∈ [2k − 2]0, and E2 be the expected
number of tree switches of a packet that is originated by a vertex in L2. Then, we can show.

I Lemma 5. It holds Eu ≥ 3
2k−1Ed + 2k−4

2k−1Eu + 1 .

Proof. Let p be routed along Th and located at v2
h, for some h ∈ [2k − 2]0. W.l.o.g, let h = 0. By

the construction of T0, from v1
0 packet p should be forwarded to v2

1 but (v2
0 , v

2
1) has failed. So, from

v2
0 , p is forwarded downwards along T1, T2k−2 or T2k−1 with probability 3

2k−1 and routed along
any other tree Tj to a vertex v2

j in L2 with probability at least 2k−4
2k−1 . Hence, the lemma follows. J

I Lemma 6. We have Ed ∈ Ω(k2).

Proof. By the construction, a packet routed downwards traverses arc (v2
i , v

1
i) of Ti. W.l.o.g, let

p be routed along (v2
2i, v

1
2i) of T2i. As (v1

2i, v
1
2i+1), which belongs to T2i, has failed, p is rerouted

along Tj for some j ∈ [2k]0 \ {2i}. Among them, only T2i+1 has a path from v1
2i to d that does not

contain any failed link. T2i+1 is chosen with probability 1
2k−1 .

If any other tree Tj is chosen except T2k−2 and T2k−1, which happens with probability 2k−4
2k−1 , then

p is rerouted through Tj from v1
2i to a vertex v2

j in L2, and hence

Ed ≥
2k − 4
2k − 1Eu + 1. (4)

Putting together with (4) and Lemma 5 we obtain Ed ∈ Ω(k2). J

We finally observe that any packet originated at a vertex of L2 is routed downwards at least once
before reaching the destination vertex, i.e., E2 ≥ Ed = Ω(k2), which proves the following theorem.

I Theorem 7. For any k > 0, there exists a 2k edge-connected graph, a set of 2k arc-disjoint
spanning trees, and a set of 2k− 1 failed edges, such that the expected number of tree switches with
RAND-ALGO is Ω(k2). 1

6.2 Correctness of Randomized-Bouncing Routing

In this section we prove that RAND-BOUNCING-ALGO eventually delivers a packet to d, i.e. it
avoids loops, and in the next section we analyze its efficiency.
Assume that we, magically, know whether the arborescence we are routing along is a good one or
not. Then, on a failed edge we could bounce if the arborescence is good, or switch to the next
arborescence otherwise. And, we would not even need any randomness. However, we do not really

1 In the extended version of this paper [9], we show a more involved example for which RAND-ALGO makes
Ω(|V |k2) hops, in expectation, to deliver a packet to d.

ICALP 2016

XXX:10 On the Resiliency of Randomized Routing Against Multiple Edge Failures

know whether an arborescence is good or not since we do not know which edges will fail. To
alleviate this lack of information we use a random guess. So, each time we hit a failed edge we take
a guess that the arborescence is good, where the parameter q estimates this likelihood. Notice that
RAND-BOUNCING-ALGO implements exactly this approach. As an example, consider Fig. 1. If
a packet originated at a is first routed through Red and the corresponding outgoing edge {a, c} is
failed, then the packet is forwarded with probability q to Blue or Green chosen u.a.r., and with
probability 1 − q it is bounced to Green, which shares the outgoing failed edge {a, c} with Red.
By the following lemma we show that this approach leads to (k − 1)-resilient routing.

I Lemma 8. RAND-BOUNCING-ALGO produces a set of (k − 1)-resilient routing functions.

Proof. By Lemma 4 we have that there exists at least one arborescence Ti of T such that bouncing
on any failed edge of Ti the packet will reach d without any further interruption. Now, as on a
failed edge algorithm RAND-BOUNCING-ALGO will switch to Ti with positive probability, and on
a failed edge of Ti the algorithm will bounce with positive probability, we have that the algorithm
will eventually reach d. J

6.3 Number of Switches of RAND-BOUNCING-ALGO

In this subsection we analyze the expected number of times I the packet is rerouted from one ar-
borescence to another one in RAND-BOUNCING-ALGO. As we are interested in providing an upper
bound on I , we make the following assumptions. First, we assume that bouncing from an arbores-
cence which is not good the routing always bounces to an arborescence which is not good as well.
Second, we assume that only by bouncing from a good arborescence the routing will reach d without
switching to any other arborescence. Third, we assume that there are exactly k − f good arbores-
cences, which is the lower bound provided by Lemma 1 and Lemma 3. Clearly, these assumptions
can only lead to an increased number of iterations compared to the real case. Finally, for the sake of
brevity we define t := f

k .
Now, we are ready to start with the analysis. As the first step we define a random variable, where

in the definitions T is the arborescence variable from algorithm RAND-BOUNCING-ALGO,

X := number of times a failed edge is hit before reaching d if routing on T

Let Tinit be the first arborescence that we consider in RAND-BOUNCING-ALGO. Then, E [I] is
upper-bounded by

E [I] ≤ Pr [Tinit is not good]E [X|Tinit is not good] + Pr [Tinit is good]E [X|Tinit is good] , (5)

where from our assumptions we have

Pr [Tinit is not good] = t, and Pr [Tinit is good] = 1− t.

To simplify calculations, let XP and YP be pessimistic upper bound on conditional expected
values. That is, let XP be the same as E [X|Tinit is not good] and YP as E [X|Tinit is good] under
assumption that: the packet always hits a failed edge unless it bounces on a good arborescence; and,
whenever packet bounces on a non-good arborescence it switches to a non-good one.

Now, let us express XP and YP as functions in XP , YP , q, and t, while following our assump-
tions. If T is not a good arborescence, then a routing along T will hit a failed edge. If it hits a failed
edge, with probability 1 − q the routing will bounce and switch to a non good arborescence. With
probability qt the routing scheme will set T to be a non good arborescence, and with probability
q(1− t) it will set T to be a good arborescence. Formally, we have

XP = 1 + qtXP + q(1− t)YP + (1− q)XP . (6)

Chiesa et. al. XXX:11

Applying an analogous reasoning about YP , we obtain

YP = 1 + qtXP + q(1− t)YP . (7)

Observe that the equations describing XP and YP differ only in the term (1 − q)XP . This comes
from the fact that bouncing on a good arborescences the packet will reach d without hitting any other
failed edge.

By some simple calculations (see [9]), we obtain

E [I] ≤ U(q) := t

(1− q)q(1− t) + 1
1− q . (8)

Now we can prove the following lemma.

I Lemma 9. We have that

E [I] ≤ 2 + 4 t

1− t = 2 + 4 f

k − f
.

Proof. From (8) we have E [I] ≤ U(q). Setting q = 1/2 we obtain

U(1/2) ≤ 2 + 4 t

1− t ,

and by plugging t = f/k the lemma follows. J

Note that if we know f in advance, or have some guarantee in terms of an upper bound on f , we
can derive parameter q that improves the running time of RAND-BOUNCING-ALGO, as provided by
the following lemma.

I Lemma 10. U(q) is minimized for q = q∗ := 1− (1 +
√
t)−1, and equal to

U(q∗) = 1 +
√
t

1−
√
t
. (9)

Proof. Consider U(q)′, which is

U(q)′ = t(1− q)2 − q2

(1− q)2q2(t− 1) .

In order to find the value of q that minimizes U(q), denote it by q∗, we find the roots of U(q)′ = 0
with respect to q. There is only one positive solution of equation U(q)′ = 0, which is also the
minimizer q∗, and is equal to q∗ = 1− 1

1+
√
t
, as desired.

Finally, substituting q∗ into (8) and simplifying the expression we obtain (9). J

Observe that

U(q∗) ≤ 4
1− f

k

.

Therefore, if f = αk, i.e., only a fraction of the edges fail, we obtain U(q∗) ≤ 4
1−α . This means

that the expected number of arborescence switches does not depend on the number of failed edges
but on the ratio between this number and the connectivity of the graph. Otherwise, if f = k− 1, we
have that the expected number of arborescence switches is bounded by 4k, which is linear w.r.t. to
the connectivity of the graph. Combining these conclusions with Lemma 8, we obtain the following.

I Theorem 11. Given a k-connected graph G, destination d and a decomposition of G into k
arc-disjoint arborescences T rooted at d, there exists a (k − 1)-resilient algorithm that delivers a

packet to d after O
(

k
k−fH

)
hops in expectation, where H is the length of a longest path of any

arborescence of T and f the number of failed edges. The algorithm uses randomization only when
encounters a failed edge. In particular, if f = 0, the algorithm is deterministic.

ICALP 2016

XXX:12 On the Resiliency of Randomized Routing Against Multiple Edge Failures

6.4 An Extension : Rerouting in a Non-uniform Manner

In this section we briefly study non-uniform choice of arborescence used for rerouting in algorithm
RAND-BOUNCING-ALGO. To motivate that discussion, consider a scenario in which a packet hits a
failed edge u, v while routed along arborescence T . Wlog, assume T = Tk. Furthermore, assume
that path v-d along every other arborescence does not contain any failed link. Therefore, switching
from Tk to any other arborescence the packet will reach d without any further interruption. If the
packet is rerouted at step 2.2.(a) of algorithm RAND-BOUNCING-ALGO but not bounced, then the
rerouting tree is chosen uniformly at random. It further means that the expected number of edges
the packet will traverse before reaching d from v is

EU =
k−1∑
i=1

distTi
(v)

k − 1 =
∑k−1
i=1 distTi(v)
k − 1 ,

where distTi
(a) is the number of the edges on the unique path from a to d along arborescence Ti.2

However, the distances from v to d along different arborescences might significantly differ. This
naturally suggests us to consider a non-uniform distribution of arborescences chosen at step 2.2.(a)
of RAND-BOUNCING-ALGO, as we do in the rest of this section.

For each vertex v 6= d and each arborescence Ti define probability piv as

piv :=
1

distTi
(v)∑k−1

j=1
1

distTj
(v)

.

The expected number of the edges the packet will traverse if each arborescence is chosen with respect
to the distribution given by pv is

ENU =
k−1∑
i=1

pivdistTi
(v) =

k−1∑
i=1

1∑k−1
j=1

1
distTj

(v)

= k − 1∑k−1
i=1

1
distTi

(v)

.

Now we would like to show that indeed EU
?
≥ ENU . But, it is the same as showing that

(k − 1)2 ?
≤
k−1∑
i=1

distTi
(v)

k−1∑
i=1

1
distTi

(v) .

However, the latter follows from Cauchy–Schwarz inequality as

(k − 1)2 =
(
k−1∑
i=1

√
distTi

(v)

√
1

distTi(v)

)2

≤
k−1∑
i=1

distTi
(v)

k−1∑
i=1

1
distTi(v) .

Hence, EU ≥ ENU , as advertised.
We note that this example is a potential scenario that might occur. However, and unfortunately,

in case of failures we are unable to detect whether the described situation has occurred or not. Nev-
ertheless, we believe that in practical applications the non-uniform choice of arborescences used for
rerouting, as described above, would result in a more efficient routing than its uniform counterpart.

2 As a remark, the best option in this scenario would be to reroute the packet along the arborescence Ti such that
i = arg mini distTi

(v). Unfortunately, our model does not provide the information whether there is any failed
edge on path v-d along Ti or not.

Chiesa et. al. XXX:13

References

1 A. Atlas and A. Zinin. U-turn Alternates for IP/LDP Fast-Reroute. IETF Internet draft version 03,
February 2006.

2 A. Atlas and A. Zinin. Basic Specification for IP Fast Reroute: Loop-Free Alternates. IETF, RFC
5286, 2008.

3 Roberto Beraldi. Biased random walks in uniform wireless networks. Mobile Computing, IEEE
Transactions on, 8(4):500–513, 2009.

4 Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Fast Edge Split-
ting and Edmonds’ Arborescence Construction for Unweighted Graphs. In Proc. SODA, pages
455–464, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347132.

5 Michael Borokhovich and Stefan Schmid. How (Not) to Shoot in Your Foot with SDN Local Fast
Failover - A Load-Connectivity Tradeoff. In OPODIS, pages 68–82, 2013.

6 Graham Brightwell and Peter Winkler. Maximum hitting time for random walks on graphs. Random
Struct. Algorithms, 1(3):263–276, October 1990. doi:10.1002/rsa.3240010303.

7 Costas Busch, Maurice Herlihy, and Roger Wattenhofer. Randomized greedy hot-potato routing.
In SODA, pages 458–466, 2000.

8 Marco Chiesa, Ilya Nikolaevskiy, Slobodan Mitrović, Aurojit Panda, Andrei Gurtov, Aleksander
Ma̧dry, Michael Schapira, and Scott Shenker. The quest for resilient (static) forwarding tables. In
International Conference on Computer Communications (INFOCOM), 2016 IEEE. IEEE, 2016.

9 Marco Chiesa, Ilya Nikolaevskiy, Aurojit Panda, Andrei Gurtov, Michael Schapira, and Scott
Shenker. Exploring the limits of static failover routing. CoRR, abs/1409.0034, 2014. URL:
http://arxiv.org/abs/1409.0034.

10 Jack Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91–96, 1972.
11 Theodore Elhourani, Abishek Gopalan, and Srinivasan Ramasubramanian. IP Fast Rerouting for

Multi-Link Failures. In Proc. IEEE INFOCOM, pages 2148–2156, 2014.
12 Gábor Enyedi, Gábor Rétvári, and Tibor Cinkler. A Novel Loop-free IP Fast Reroute Algorithm.

In Proc. EUNICE, pages 111–119. Springer-Verlag, 2007. URL: http://dl.acm.org/
citation.cfm?id=1779813.1779832.

13 Joan Feigenbaum, P. Brighten Godfrey, Aurojit Panda, Michael Schapira, Scott Shenker, and Ankit
Singla. On the resilience of routing tables. In Brief announcement PODC, July 2012.

14 Eli M. Gafni and Dimitri P. Bertsekas. Distributed algorithms for generating loop-free routes in
networks with frequently changing topology. IEEE Transactions on Communications, 1981.

15 Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network failures in data
centers: Measurement, analysis, and implications. SIGCOMM Comput. Commun. Rev., 41(4):350–
361, August 2011.

16 Albert Greenberg, James R Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap
Lahiri, David A Maltz, Parveen Patel, and Sudipta Sengupta. Vl2: a scalable and flexible data
center network. In ACM SIGCOMM computer communication review, pages 51–62. ACM, 2009.

17 Mesut Günes, Martin Kähmer, and Imed Bouazizi. Ant-routing-algorithm (ara) for mobile multi-
hop ad-hoc networks-new features and results. In The second mediterranean workshop on ad-hoc
networks, 2003.

18 Kin-Wah Kwong, Lixin Gao, Roch Guérin, and Zhi-Li Zhang. On the Feasibility and Efficacy
of Protection Routing in IP Networks. IEEE/ACM Trans. Networking, 19(5):1543–1556, October
2011.

19 K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker, and I. Stoica. Achieving
convergence-free routing using failure-carrying packets. In SIGCOMM, 2007.

20 Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira, and Scott Shenker.
Ensuring Connectivity via Data Plane Mechanisms. In Proc. of NSDI, pages 113–126, 2013.

ICALP 2016

http://dl.acm.org/citation.cfm?id=1347082.1347132
http://dx.doi.org/10.1002/rsa.3240010303
http://arxiv.org/abs/1409.0034
http://dl.acm.org/citation.cfm?id=1779813.1779832
http://dl.acm.org/citation.cfm?id=1779813.1779832

XXX:14 On the Resiliency of Randomized Routing Against Multiple Edge Failures

21 Junda Liu, Baohua Yan, Scott Shenker, and Michael Schapira. Data-driven Network Connectiv-
ity. In Proc. of HotNets, pages 8:1–8:6, New York, NY, USA, 2011. ACM. doi:10.1145/

2070562.2070570.
22 Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li Zhang, and Chen-Nee Chuah. Fast Local

Rerouting for Handling Transient Link Failures. IEEE/ACM Trans. Networking, 15(2):359–372,
April 2007.

23 Ping Pan, George Swallow, and Alia Atlas. Rfc 4090 fast reroute extensions to rsvp-te for lsp
tunnels. Internet Request for Comments, page 42, 2005.

24 Gero Schollmeier, Joachim Charzinski, Andreas Kirstadter, Christoph Reichert, Karl J. Schrodi,
Yuri Glickman, and Chris Winkler. Improving the Resilience in IP Networks. In Proc. HPSR,
2003.

25 FB Shepherd and PJ Winzer. Selective randomized load balancing and mesh networks with chan-
ging demands. Journal of Optical Networking, 5(5):320–339, 2006.

26 Brent Stephens, Alan L. Cox, and Scott Rixner. Plinko: Building Provably Resilient Forward-
ing Tables. In Proc. of HotNets, pages 26:1–26:7. ACM, 2013. doi:10.1145/2535771.

2535774.
27 Leslie G. Valiant. A scheme for fast parallel communication. SIAM journal on computing,

11(2):350–361, 1982.
28 Junling Wang and Srihari Nelakuditi. IP Fast Reroute with Failure Inferencing. In Proc. of SIG-

COMM Workshop on Internet Network Management, INM, pages 268–273, New York, NY, USA,
2007. ACM. doi:10.1145/1321753.1321764.

29 Baohua Yang, Junda Liu, Scott Shenker, Jun Li, and Kai Zheng. Keep Forwarding: Towards K-link
Failure Resilient Routing. In Proc. IEEE INFOCOM, pages 1617–1625, 2014.

30 Baobao Zhang, Jianping Wu, and Jun Bi. RPFP: IP fast reroute with providing complete protection
and without using tunnels. In IWQoS, pages 137–146, 2013.

31 Rui Zhang-Shen and Nick McKeown. Designing a fault-tolerant network using valiant load-
balancing. In INFOCOM 2008. The 27th Conference on Computer Communications. IEEE. IEEE,
2008.

32 Zifei Zhong, Srihari Nelakuditi, Yinzhe Yu, Sanghwan Lee, Junling Wang, and Chen nee Chuah.
Failure Inferencing based Fast Rerouting for Handling Transient Link and Node Failures. In Proc.
IEEE INFOCOM, 2005.

http://dx.doi.org/10.1145/2070562.2070570
http://dx.doi.org/10.1145/2070562.2070570
http://dx.doi.org/10.1145/2535771.2535774
http://dx.doi.org/10.1145/2535771.2535774
http://dx.doi.org/10.1145/1321753.1321764

	Introduction
	Our Results
	Organization

	Related Work
	Model
	General Routing Techniques and Randomized Algorithm
	Meta-graph, Good Arcs, and Good Arborescences
	Randomized Routing via Good Arborescences
	A Simple (Inefficient) Randomized Routing
	Correctness of Randomized-Bouncing Routing
	Number of Switches of Rand-Bouncing-Algo
	An Extension : Rerouting in a Non-uniform Manner

