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Abstract
Programmable switches make it easier to perform flexible
network monitoring queries at line rate, and scalable stream
processors make it possible to fuse data streams to answer
more sophisticated queries about the network in real-time.
Unfortunately, processing such network monitoring queries
at high traffic rates requires both the switches and the stream
processors to filter the traffic iteratively and adaptively so
as to extract only that traffic that is of interest to the query
at hand. Others have network monitoring in the context of
streaming; yet, previous work has not closed the loop in a way
that allows network operators to perform streaming analytics
for network monitoring applications at scale. To achieve
this objective, Sonata allows operators to express a network
monitoring query by considering each packet as a tuple and
efficiently partitioning each query between the switches and
the stream processor through iterative refinement. Sonata
extracts only the traffic that pertains to each query, ensuring
that the stream processor can scale traffic rates of several
terabits per second. We show with a simple example query
involving DNS reflection attacks and traffic traces from one
of the world’s largest IXPs that Sonata can capture 95% of
all traffic pertaining to the query, while reducing the overall
data rate by a factor of about 400 and the number of required
counters by four orders of magnitude.

1 Introduction
To ensure that the network is secure and performs well in the
face of continually changing network conditions (e.g., fail-
ures, attacks, shifts in traffic load), operators need to collect
and fuse heterogeneous streams of information from traffic
statistics to alerts from intrusion detection systems and other
monitoring devices. Operators currently collect these data
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streams [15, 24, 32], which often arrive at high data rates; yet,
despite the fact that these streams contain rich information
about the security and performance of the network, operators
have difficulty analyzing them [25].

Several factors make it difficult for network operators to an-
alyze network traffic statistics to perform even basic analysis
concerning the operation of the network. First, existing hard-
ware offers relatively fixed-function measurement capabilities
(e.g., IPFIX [11], SNMP [4]), and enabling these functions
is often a costly all-or-nothing decision. Second, because
operators have no way of specifying what types of data they
are interested in before it is collected, the configuration of
these capabilities is often static (e.g., a fixed sampling rate
for IPFIX records), resulting in data that is either too high-
volume to store or process, or too coarse to be particularly
useful in answering questions of interest. Finally, existing ap-
proaches have no meaningful way to fuse these data streams,
even though it is often the correlation of signals from multiple
streams that can lend insight into higher-level performance or
security problems.

Advances in both programmable switch hardware and
streaming data analysis platforms make it possible to address
these challenges. We explore whether improved switch pro-
grammability and better data stream processing capabilities
improve the utility of network measurement. Programmable
switches such as OpenFlow [21] switches make it possible to
capture subsets of traffic by inserting rules in the switches that
rely on simple match criteria in packet headers; software con-
trollers update these rules and make it possible to update these
rules in real-time, creating the potential for closed-loop feed-
back, where current observations can drive future decisions
about which traffic to capture. In addition to better switch
capabilities that allow for the collection of richer data streams,
new system capabilities are making it easier to process and
analyze network data: streaming data processing platforms
such as Spark Streaming [2] and Apache Storm [29] make it
possible to efficiently process queries on streams of tuples at
relatively high data rates, and to issue queries based on com-
binations of heterogeneous data streams, facilitating complex
queries that combine heterogeneous data sources, possibly
from multiple distinct network vantage points.

Performing streaming data analysis on existing network
traffic streams is more challenging than simply pointing exist-
ing streams from switches at off-the-shelf stream-processing
systems. One challenge is the quantity of data: when we



consider the volume of traffic traversing a backbone network
or switch at a large Internet exchange point, it is clear that the
volume of data is far too high for a typical stream process-
ing system—although these systems are designed to “scale
out” as data rates increase, traffic rates are high, already at
several terabits per second, and increasing quickly [14]; and
processing data at increasingly high rates raises both cost and
complexity. Previous work such as OpenSoc [25] describes
the complexity of processing millions of packets per second,
which is still several orders of magnitude less than what ex-
ists in large backbone networks and Internet exchange points.
Instead, we propose to use knowledge of the operator’s query
to refine the data that each switch collects, reducing the data
that individual switches must export but nonetheless allowing
for refinements of the measurements later in the process.

Consider the example of detecting a DNS reflection attack,
whereby an attacker sends many DNS queries with a source IP
address that is spoofed to be that of the victim. In this case, the
operator might detect the attack by noticing a sudden increase
in query volume or rate from a single source IP address,
possibly for entirely new domains. Yet, even tracking this
simple trend—the rate of DNS queries from individual source
IP addresses—could in principle require creating a counter
for each IP address, which is prohibitive, particularly given
the increasing prevalence of IPv6. Instead, the operator might
want to express a query that operates on smaller subsets of
the total data and iteratively refines itself to “zoom in” on the
attack traffic.

We introduce a system called Sonata1 that allows an oper-
ator to express these types of queries using widely accepted
programming idioms in distributed data analytics. Specifi-
cally, Sonata allows a network operator to view each packet as
a tuple and express queries as operations over tuple streams,
just as in any other data stream processing system. The Sonata
runtime then both: (1) partitions the workload between the
switches and the stream processing system to ensure that the
stream processor does not become overloaded and (2) iter-
atively refines the configurations for the data plane and the
stream processor, to allow operators to inspect traffic at finer
granularities when anomalies or other interesting scenarios
arise. Existing streaming analytics platforms for network
monitoring (e.g., [24, 32]) view the data stream as exoge-
nously given. In contrast, Sonata considers the data to be
endogenously determined; i.e., it relies critically on a built-in
feedback mechanism between the stream processor and the
programmable data plane to adaptively refine the data stream
itself, thus reducing the load on stream processors and en-
abling them to process queries for traffic streams at very high
rates. It is in this sense that we view network monitoring as a
new type of streaming analytics problem.

We evaluate our initial open-source prototype implemen-
tation in the context of DNS reflection attack detection and
show that it is possible to “zoom-in” on traffic of interest
while capturing far less traffic that does not pertain to the

1Scalable Streaming Network Traffic Analysis (SSNTA, or “SONATA”).

attack itself. We show with a simple example query involv-
ing DNS reflection attacks that Sonata can capture 95% of
all traffic pertaining to the query, while reducing the overall
data rate by a factor of about 400 and the number of required
counters by four orders of magnitude.

2 Related Work
One extreme of the spectrum of design options for Sonata
is to execute monitoring queries entirely in user space. The
data processing component of Sonata follows a long line of
related efforts in the database community [1, 9, 13, 30, 36]
and also builds on the prior work on streaming data in the
form of network traffic [5, 13, 30]. Chimera [5] introduced a
new query language based on a streaming SQL for processing
network traffic in user-space. Network operators have lever-
aged the recent advances in the area of scalable streaming
data analysis [2, 16, 24, 29, 32] to build platforms capable of
processing network data at very high rates. The database
community has also explored the query optimization problem
extensively [3, 27]. Gigascope [13] uses query partitioning to
minimize the data transfer within the stream processor. Geo-
distributed analytics systems such as Clarinet [34] use forms
of query partitioning. Yet, executing all transformations in the
user space is costly. As a result, these platforms face major
scalability challenges at high data rates [25].

The other extreme of the design spectrum for Sonata is to
execute the monitoring queries entirely in the data plane. Exe-
cuting monitoring queries in the data plane is not new. Before
the days of programmable data planes, vertically integrated
monitoring programs with limited (and fixed) functionalities
like NetFlow [10], SFlow [26], IPFIX [11], and SNMP [4]
could execute simple monitoring queries. The advent of pro-
grammable data plane broadened the scope of monitoring
queries that can be executed in the data plane.

OpenSketch [35] equips switches with a library of prede-
fined functions(e.g., count-min sketch, reversible sketch) in
hardware; the controller selects and assembles them for dif-
ferent measurement tasks. UnivMon [20] takes a “RISC-type”
approach to measurement, replacing the entire library of pre-
defined functions with a generic monitoring primitive on the
routers in the form of a single universal sketch. Similarly,
Narayana et al. [23] recently proposed the design of a switch
supporting a range of network performance queries that ex-
ecute on the switch using a programmable key-value store.
The queries enabled by the programmable data plane are not
suited for applications that (1) require joining multiple data
streams; (2) require executing more complex operations such
as skyline monitoring [31], or frequent, rare, or persistent
itemset mining [8, 17]; and (3) require processing packet pay-
loads, e.g., monitoring applications described in Chimera [5].

ProgME [36] and Jose et al. [18] also explore the idea of
iterative refinement for detecting heavy hitter traffic. They
use iterative refinement to minimize the number of counters
required to identify hierarchical heavy hitters, but ProgME
requires multiple passes over the same packets—making scal-
ability to high data rates very challenging. Unlike Sonata,



these systems concentrate on executing queries entirely in
the data plane. We posit that the combined use of a general-
purpose stream processor and the programmable data plane
gives network operators the “best bang for the buck”—the
flexibility of stream processing and the speed of the data
plane.

3 Example Applications
In this section, we show how three network monitoring
problems—reflection attack monitoring, application perfor-
mance analysis, and port scan detection—can be expressed
as streaming analytics problems.

Reflection attack monitoring. Consider the problem of
detecting DNS amplification attacks, where compromised
machines send spoofed DNS requests to resolvers. These
spoofed requests have source IP addresses inside the target
network. One such reflection attack on Spamhaus in 2013 [7]
used some 30,000 open resolvers around the globe and an
amplification factor of about 70 to generate attack traffic with
an intensity of around 75 Gbps.

A straightforward approach to detect DNS-based amplifi-
cation attacks in real-time requires maintaining state for every
unique IP address and keeping track of the difference between
the observed DNS requests and responses for each IP address;
if that difference exceeds a pre-specified threshold, it may
indicate the onset of an attack. At an Internet exchange point
(IXP), every traffic flow that traverses the IXP switching fab-
ric can be mapped to a source and destination MAC address
corresponding to where the traffic enters and leaves the IXP
switch. Traffic volumes at such a location are so high [14] that
they would overwhelm any reasonably provisioned stream
processor [25]; yet, because the traffic of interest is only a
small fraction of DNS traffic (which is, in turn, only a small
fraction of all traffic), the stream processor can take advantage
of data-plane programmability to iteratively push rules into
the data plane that only return traffic that satisfies the query.

Real-time application performance analysis. Assume a
network with asymmetric network paths, such that data and
acknowledgments traverse different paths in the network. Sup-
pose a network operator wishes to construct a distribution of
round-trip latency (or other statistics, such as jitter or packet
loss) for all video streaming flows. Each network location
sees a stream of packets. A stream of packets can be repre-
sented as a stream of tuples, having attributes such as times-
tamp, src IP, src port, dst IP, dst port, and application type.
One location in the network will have the tuples correspond-
ing to data traffic, and another may see tuples corresponding
to the ACKs.

To create a stream of tuples that includes round-trip times,
we must join the tuples at each of the two locations. A filter
operation can select for streaming video traffic, and a reduce
operation can perform the necessary subtraction and aggrega-
tion to compute the round-trip latency over time. Note that
the operator can express the query simply as filtering and re-
duce operations that view the network traffic as a single large
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Figure 1: Sonata architecture for detecting network events in reac-
tive manner.

collection of tuples, even though traffic may be distributed
across multiple locations. Queries might also aggregate these
statistics at coarser levels of aggregation (e.g., AS, prefix, user
group), iteratively zooming-in on user groups for which the
measured round-trip time exceeds a given threshold.

Distributed port scan detection. Suppose an operator wants
to detect port scans that may be coming from distributed
locations (and, hence, appear at a variety of network loca-
tions). Existing intrusion prevention system (IPS) devices
often cannot process traffic at high rates, and they typically
only operate at a single network location. Instead, a network
operator might write a query that counts the number of distinct
SYN packets that never have a corresponding ACK packet,
as in previous port scan detection work [19]. By viewing
each packet as a tuple, writing such a query is straightfor-
ward: a simple reduce operation can couple each SYN with
a matching ACK, if it exists. Such a query must necessarily
be distributed across the network, since SYNs and their corre-
sponding ACKs may not traverse the same network devices.

4 Sonata

Sonata allows network operators to specify monitoring
queries and fuse data streams from multiple queries. Sonata
has a runtime system that compiles queries to generate a set
of rules to install in the switches and processing pipelines
at the stream processor. Figure 1 shows how Sonata pro-
cesses incoming network traffic to extract tuples that satisfy a
particular query. In this section, we provide an overview of
Sonata and the design insights that allow it to scale to high
data rates. Sonata’s runtime translates each query into the for-
warding table entries for the data plane and data processing
pipelines for the stream processor. The data-plane opera-
tions ensure that (1) filtering is based on relative sampling
rates for different flows, and (2) the rate of the filtered data
stream is always less than the system-defined constraints (e.g.,
span port capacity (P), supported ingestion rate (R) for the
streaming platform). We implemented the current prototype
in Python; the Ryu [28] controller interacts with software
switches running Open vSwitch 2.5 and OpenFlow 1.3. The
stream processor is Apache Spark [2].



The rest of the section explains Sonata’s design choices
in detail, using monitoring of DNS reflection attacks at a
large IXP from Section 3 as a running example: Simple
detection of DNS reflection might count DNS request and
response messages for each IP address at the IXP and compare
the obtained values against a threshold at regular intervals
to detect victim IP addresses. Although we focus on this
particular example, other possible applications could include
reflection attack monitoring for other UDP protocols [33],
detection of distributed port scans, or monitoring TCP traffic
across asymmetric paths to track the jitter of a video stream
over time, as discussed in Section 3.

4.1 Packets-as-Tuples Abstraction
Sonata presents network operators with the simple abstraction
of packets as tuples, thus allowing them to write network mon-
itoring queries in terms of operations over a stream of tuples,
which is a common model for stream processing frameworks
such as Apache Storm or Spark Streaming. The Sonata API
adopts and extends the functional API of Spark Streaming,
familiar to many programmers. Each packet header is a tu-
ple; the payload itself is also represented as a tuple. Thus,
each packet tuple is a collection of field values including (ts,
locationID, sIP, sMac, sPort, dIP, dMac, dPort,
bytes, payload), where locationID represents the lo-
cation of the packet in the network (i.e., which switch it is
traversing). The example below shows how a network opera-
tor might take a raw stream of packets, filter it according to
some criterion (e.g., DNS replies), sample the resulting tuple
stream at a given rate r, and count the resulting number of
tuples within each time interval of length T . The argument to
the filter operation is a function literal (or lambda).

1 DNS = p k t S t r e a m . f i l t e r ( p => p . s P o r t == 53)
2 . sample ( r ) . countByWindow ( T )

4.2 Query Partitioning
Sonata allows a programmer to specify whether a particu-
lar operation should execute in the data plane (operations
denoted with the suffix D) or at the stream processor (used
by default). For instance, the filterD operation applies
filtering at the switch, whereas the filter operation applies
it at the stream processor; a similar distinction applies for the
sampleD / sample operations. Currently, programmers
must specify this partitioning manually, but we are exploring
algorithms to automate this process. As an example, consider
monitoring destination IPs (dIPs) for which the number of
DNS replies over a time interval T exceeds a given thresh-
old X . A programmer could specify that the switch should
perform the initial filtering and sampling of the raw packet
stream, reducing the workload on the stream processor:

1 I P s = p k t S t r e a m
2 . f i l t e r D ( p => p . s P o r t == 53)
3 . sampleD ( r ) . map ( p => p . dIP )
4 . countByValueAndWindow ( T )
5 . f i l t e r ( t => t . c o u n t > X)

4.3 Iterative Query Refinement

Sonata allows network operators to express the logic for re-
fining queries based on dynamic conditions. We refer to
this process as iterative query refinement. Operators can use
domain-specific insights to express their logic for refining
queries.

As Sonata enables combining multiple queries that fuse
data streams, an interesting form of iterative query refinement
occurs when the results from ongoing queries drive refine-
ments to existing queries. For example, consider an applica-
tion with two monitoring queries q1 and q2, each executing
over a time interval of length T . Assume q1 is parameterized
by some argument A, i.e., q1(A) and that a new value of A is
produced by q2 after every time interval, i.e., A(t +1) = q(t)2 .
Then, we observe that q(t)2 refines q1 at time interval t + 1:
q(t+1)

1 (A(t + 1)) = q(t+1)
1 (q(t)2 ), since q1 is affected by the

execution of q2 in the previous time interval.

For example, the examples in earlier sections uniformly
sample all the DNS response traffic; but at very high data
rates, this approach may be prohibitive with a high sampling
rate. Instead, one could sample the entire DNS response
traffic at a lower sampling rate, and at a higher sampling rate
only the traffic from “suspicious” IP addresses. The example
below shows how an operator would specify this objective
using iterative query refinement:

1 p v i c I P s ( t ) =
2 p k t S t r e a m . f i l t e r D ( p => p . s P o r t == 53)
3 . sampleD ( r0 ) . map ( p => ( p . d I P , p . s I P ) )
4 . d i s t i n c t . map ( t => ( t . d I P , 1 ) )
5 . countByValueAndWindow ( T )
6 . f i l t e r ( t => t . c o u n t > X)
7
8 c v i c I P s ( t ) =
9 p k t S t r e a m . f i l t e r D ( p => p . s P o r t == 53)

10 . f i l t e r D ( p => p . dIP i n p v i c I P s ( t−1 ) )
11 . sampleD ( r1 ) . map ( p => ( p . d I P , p . s I P ) )
12 . d i s t i n c t . map ( t => ( t . d I P , 1 ) )
13 . countByValueAndWindow ( T )
14 . f i l t e r ( t => t . c o u n t > X’ )

This example identifies confirmed victim IP addresses (i.e.,
cvicIPs) by combining two queries executed over succes-
sive time windows of length T . The first query picks up the
list of potential victim IPs (i.e., pvicIPs); that is, those dIPs
that receive DNS replies from more than X unique source IP
addresses. At the end of each time interval, the most current
pvicIPs list refines the second query in the sense that it
serves as input to the second query which samples traffic
from these potential victim IPs at a higher rate (r1 > r0) dur-
ing the next time interval so as to confirm the presence of
attack traffic using pre-specified threshold values. Figure 2
shows how query partitioning and iterative refinement are re-
alized in Sonata for this example. Iterative query refinement
only updates the filtering and sampling configuration in the
data plane; this particular example involves no updates to the
stream processor.
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Figure 2: Sonata’s query partitioning and iterative refinement in
action.

Iterative queries are not limited to updating only the data
plane’s filtering and sampling configuration. For example,
one can write iterative queries that process the packet stream
differently—making confirmation more robust. The exam-
ple above still requires maintaining per-IP counters, but it is
possible to instead count at a coarser level of granularity and
iteratively refine the queries that count at a finer level. When
detecting DNS attacks at an IXP, a programmer might write
a query that maintains per-MAC counters (i.e., counters on
each of the IXP’s physical ports), compares each of these
values against some threshold, and populates pvicMACs,
a list of MAC addresses suspected to receive attack traffic;
although a large IXP may have millions of per-IP counters,
even a large IXP would only have a few hundred counters for
each MAC address. A query for the next interval can then
use this query’s output for the current interval to produce the
pvicIPs list—processing packet tuples for victim MAC ad-
dresses only. Finally, over a subsequent time interval, another
query can take the list of pvicIPs as input to confirm victim
IPs, as shown above.

5 Preliminary Evaluation
We perform a trace-driven simulation to evaluate the effec-
tiveness of iterative query refinement and query partitioning.
For this simulation, we first use our prototype implementation
to express the queries for the DNS-based reflection attack
monitoring application. We then use a trace of IPFIX records,
collected at a large IXP to measure how these two features
help Sonata scale to high data rates. In this preliminary evalu-
ation, we show that together Sonata’s query partitioning and
iterative refinement features reduce both the traffic rates that
the stream processor sees and the total number of counters
required for monitoring. Because the attack traffic is typically
a small fraction of the total traffic, Sonata’s iterative query
refinement can dynamically and reactively filter non-attack
traffic. The application also benefits from query partitioning,
which performs certain filtering and sampling tasks in the
data plane.

Experiment setup. We use a trace of IPFIX records, col-
lected using a packet sampling rate of 1 in 10,000 from one

Rate (kpps) # Counters % of Traffic
No Filtering 210,794 2.08 B 100%
Simple Filtering 2,006 9.91 M 100%
Sonata
- No Refinement 500 2.82 M 19%
- DP Refinement 500 1.68 M 88%
- DP & SP Refinement 500 200 K 95%

Table 1: Sonata’s iterative query refinement and partitioning helps
efficiently capture traffic for the query.

of the largest IXPs in Europe. On average, this IXP handles
about 3 Tbps of traffic, making it a good use case for the
type of traffic rates Sonata is designed to handle. We use
a two-hour traffic trace collected from this IXP in August
2015. This data set does not contain any user data or any
personal information that identifies individual users. The data
was collected between 2–4 a.m. local time (GMT+2) on a
working day in August 2015. Since the collection took place
during the non-peak hours, we only observed 128 million flow
records in the data. To compare the traffic that Sonata returns
for each query against ground truth, we manually identified
the portions of traffic that satisfy each Sonata query.

To illustrate the benefits of each of Sonata’s features, we
evaluate the system using five different configurations: (1) No
Filtering; (2) Simple Filtering: A filter that sends all DNS
traffic to the stream processor, without sampling or query
refinement; (3) No Refinement: Partitioning the query across
the data plane and stream processor, without performing it-
erative refinement; (4) DP Refinement: Updating the query
expressions dynamically to modify the data-plane configu-
ration over two successive time intervals, as described in
Section 4.3; (5) DP & SP Refinement: Modifying both the
data plane and the stream processor with iterative query re-
finement, as described in Section 4.3.

Reducing data rates. We examine whether executing por-
tions of a monitoring query in the programmable data plane
reduces the resulting data rate at the stream processor. Ta-
ble 1 shows the performance of the five modes in terms of
the following metrics: (1) the median rate of packet tuples
forwarded to the stream processor; (2) the median number of
counters required to track the query at the stream processor;
and (3) the median fraction of query-related packet tuples
forwarded to the stream processor.

Without filtering, the stream processor must process about
210 million packet tuples per second. Applying the filter
to only consider DNS traffic reduces this rate to about two
million tuples per second. Because Sonata’s stream processor
is configured to accept a fixed maximum data rate, we impose
a fixed limit of 500,000 tuples per second and explore how
much of the traffic that satisfies the given query is captured by
the different versions of query refinements. The combination
of different iterative refinement modes allows Sonata to cap-



ture 95% of all traffic pertaining to the query, while reducing
the overall data rate by a factor of about 400.

Reducing counters. Table 1 shows the median number of
counters required for every ten-second time interval, for each
of the five modes of the example application. Simple filtering
reduces the number of counters required to detect attack traffic
from about 2 billion counters to just under 10 million counters.
Sonata’s query partitioning reduces the number of counters
further, to just under 3 million counters. Performing iterative
refinement in the data plane reduces the number of counters
to 1.68 million, and performing iterative refinement in both
the data plane and at the stream processor (i.e., to refine the
granularity of the query in real time) reduces the number of
counters by more than a factor of ten compared to performing
no query refinement at all. Additionally, query refinement
enables the data plane to return a more accurate query stream,
given a fixed rate of 500,000 tuples per second. Given this
constraint, without iterative query refinement, the data plane
returns only 19% of the tuples that satisfies the query to the
stream processor; with iterative query refinement, 95 % of
the tuples that satisfy the original query are returned.

6 Future Directions
In contrast to existing programmable data planes, which are
relatively fixed-function (e.g., OpenFlow chipsets), emerg-
ing technologies such as those that enable in-band network
telemetry via P4 [6] make it possible to redefine packet-
processing control-flow at compile time. This capability
may enable a variety of richer measurement applications that
could take advantage of a programmable, stateful network
data plane.

One example of such an application could be to use in-band
network telemetry to attach latency statistics to packets as
they travel through network devices, thus making it possible
to pinpoint sources of increased latency, packet loss, or con-
gestion. The network devices could affix additional data to
packet headers (e.g., latency at each hop, the set of switches
that the packet traversed) which could subsequently be used
as input to a tuple-based query. Another such example is the
use of so-called “active” machine learning algorithms that im-
prove their accuracy over time by requesting more examples
of labeled data. These algorithms could use iterative refine-
ment to define a query that asks for more examples of attack
payloads when the algorithm needs to improve its accuracy.

Moving forward, streaming data—and the corresponding
aggregate statistics that the queries produce—could drive real-
time control decisions. For example, a programmable data
plane that is driven by a Sonata controller could produce fine-
grained measurements as an input to inference algorithms
which could then drive the installation not only of forwarding
table rules to refine the measurements, but also of forwarding
table rules that affect how traffic is forwarded.

Another interesting research direction concerns how these
systems could support approximate queries (e.g., [12, 22]).
The current prototype and all of the examples that we have

presented thus far return tuple streams or statistics that are
based on exact filter operations. In practice, however, many
network monitoring queries need not be so precise. An attack
or a performance degradation may be evident from a large
deviation from baseline statistics under normal operation;
in these cases, even an approximate result could reveal the
existence of a problem. Support for approximate queries
that can operate on samples of network traffic is another
interesting avenue for future work.

7 Conclusion

Network operators must typically perform network manage-
ment tasks while coping with fixed-function network mon-
itoring capabilities, such as IPFIX and SNMP. The advent
of programmable hardware makes it possible not only to
customize packet formats and protocols, but also to install
custom monitoring capabilities in network devices that output
data in formats that are amenable to the emerging body of
scalable, distributed stream processing systems.

In light of these trends, we have argued that it may be pos-
sible to think of network monitoring as a stream processing
problem, where each packet is represented by a tuple, and
streams of packets comprise tuple streams for which many
distributed stream processing programming idioms can apply.
Due to the inherently high rates of network traffic, realizing
this programming abstraction requires reducing the traffic at
the stream processor that does not satisfy the original query.
Our prototype of Sonata shows that (1) partitioning of func-
tion between the switch and the stream processor; and (2) the
ability to iteratively refine both the data plane rules for a
query and its corresponding stream processing pipeline can
reduce data rates at the stream processor by multiple orders
of magnitude by pushing many of the filtering operations into
the data plane.

Much work clearly lies ahead—such as improving the ac-
curacy of iterative refinement; automating various aspects of
query partitioning and iterative refinement, rather than relying
on the programmer to specify these parameters; taking more
advantage of the increasing programmability in P4-capable
data planes; and supporting approximate queries. Yet, the
time is right to start thinking about how to apply streaming
analytics frameworks to network monitoring. Doing so can
ultimately help operators move from the current crippling
set of technologies towards defining monitoring problems in
terms of the questions they want to answer and the data they
need to answer them.
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