
ENDEAVOUR: Towards a flexible
software-defined network ecosystem

Project name ENDEAVOUR
Project ID H2020-ICT-2014-1 Project No. 644960

Working Package Number 2
Deliverable Number 2.1

Document title Initial requirements of the SDN architecture
Document version 1.0

Editor in Chief Canini, UCLO
Author Bruyere, Canini, Castro, Chiesa, Dietzel, Kathareios, Nguyen

Date 15/12/2015
Reviewer UCAM

Date of review 14/12/2015
Status Public

WP2 / D2.1 ENDEAVOUR Version 1.0

Revision History
Date Version Description Author

25/06/15 0.1 First draft Canini (UCLO),
Nguyen (UCLO)

02/07/15 0.2 Additional requirements Castro (QMUL)

05/07/15 0.3 IXP environments Bruyere (CNRS)

07/07/15 0.4 DE-CIX environment Dietzel (DE-CIX)

07/07/15 0.5 Integration of Umbrella Bruyere (CNRS),
Canini (UCLO)

08/07/15 0.6 Review and minor changes Antichi (UCAM),
Canini (UCLO),
Nguyen (UCLO)

03/12/15 0.7 Inclusion of analysis of switches Kathareios (IBM)

10/12/15 0.8 Inclusion of preliminary
architecture

Canini (UCLO),
Chiesa (UCLO)

14/12/15 0.9 Review Antichi (UCAM)

14/12/15 1.0 Final version Canini (UCLO),
Chiesa (UCLO)

H2020-ICT-2014-1 Project No. 644960 2

WP2 / D2.1 ENDEAVOUR Version 1.0

Executive Summary

ENDEAVOUR addresses limitations of the network interconnection model
in the current Internet and enables the next-generation services through
SDN-enabled Internet eXchange Points (IXPs). So far, SDN has mostly
been considered in intra-domain settings. Bringing SDN to the inter-domain
settings would generate much more impact, both for network operators
as well as for networked applications, e.g., those deployed in the Cloud.
IXPs provide the opportunity to access a very rich network/application
ecosystem, by tapping into their function of “internetwork connectivity
fabric”, interconnecting multiple hundreds of networks of different types.
This opportunity comes with many interesting and open questions.

In this context, this deliverable focuses on the requirements of IXP
environments and general aspects and preliminary description of the
SDN control architecture towards supporting the use cases identified in
Deliverable 4.1. In particular, we focus on technical building blocks to the
distributed SDN control plane that address certain aspects of the challenges
of IXP environments that we identify. Future deliverables will bridge the
current gaps and illustrate how the various building blocks can be combined
to address specific use cases.

H2020-ICT-2014-1 Project No. 644960 3

WP2 / D2.1 ENDEAVOUR Version 1.0

Contents

1 Introduction 7

2 Characteristics of IXP Environments 7
2.1 Interfaces Characteristics . 9
2.2 Interconnecting Links and Topology 10
2.3 Layer 2 – Resiliency of Connectivity 10
2.4 Layer 3 Domain . 11
2.5 Characteristics of the DE-CIX Environment 12
2.6 Summary . 13

3 Requirements of the ENDEAVOUR SDN Architecture 14

4 Preliminary SDN Architecture 18

5 Overview of Technical Building Blocks 20
5.1 Efficient IXP Fabric . 21
5.2 Abstractions and Architectures for Network State Updates . 21
5.3 Network-Application Co-Design 22

6 Umbrella Fabric 23
6.1 Umbrella Architecture . 24

6.1.1 No more broadcast traffic 24
6.1.2 Towards a segment routing-like approach 26

6.2 Key benefits . 28
6.3 Related Works . 29
6.4 Summary . 30

7 Transactional Network Updates 31
7.1 Modeling Software-Defined Networks 33
7.2 The CPC Problem . 37
7.3 CPC Solutions and Complexity Bounds 39

7.3.1 FixTag: Per-Policy Tags 40
7.3.2 ReuseTag: Optimal Tag Complexity 41

7.4 Impossibility for Weaker Port Model 47
7.5 Related Work . 48
7.6 Summary . 50

H2020-ICT-2014-1 Project No. 644960 4

WP2 / D2.1 ENDEAVOUR Version 1.0

8 Distributed Network Updates 50
8.1 Model . 52

8.1.1 Network primitives . 52
8.1.2 Packet forwarding. 54
8.1.3 Network configuration. 56

8.2 Problem . 57
8.2.1 Network update . 57
8.2.2 Related work . 58
8.2.3 Network update scheduling 59
8.2.4 Segmentation . 61
8.2.5 Update operation . 61

8.3 Distributed Scheduling . 63
8.3.1 Creating dependency graph 64
8.3.2 Scheduling an update operation 66

9 Accelerating Consensus via Co-Design 69
9.1 Paxos Background . 71
9.2 Consensus in the Network . 72

9.2.1 Paxos in SDN Switches 73
9.2.2 Fast Network Consensus 74

9.3 Evaluation . 77
9.4 Related Work . 81
9.5 Summary . 82

10 Analysis of Commercially-Available Switches 82

11 Acronyms 84

H2020-ICT-2014-1 Project No. 644960 5

WP2 / D2.1 ENDEAVOUR Version 1.0

List of Figures

1 Preliminary architecture of an SDN-enabled IXP. 20
2 Typical topology of a medium to large IXP. 25
3 Example of multi-hop in the core. 27
4 Example of a policy composition with a 3-controller control

plane and 3-switch data plane (a). The three controllers try
to concurrently install three different policies π1, π2, and π3.
We suppose that π3 is conflicting with both π1 and π2, so
π3 is aborted (b). Circles represent data-plane events (an
inject event followed by a sequence of forward events). Next
to the history H (shown on (b) left) we depict its “sequential
equivalent” HS (shown on (b) right). In the sequential
history, no two requests are applied concurrently. 38

5 The ReuseTag algorithm: pseudocode for controller pi. . . . 43
6 The (f + 1)-loop network topology Tf 46
7 An example of network update 59
8 Decomposing a network update into three dependency graphs. 60
9 Path movement. 62
10 State diagrams . 65
11 Network Paxos architecture. Switch hardware is shaded grey.

Other devices are commodity servers. The learners each have
four network interface cards. 75

12 Evaluation of ordering assumptions showing the percentage
of messages in which learners either disagree, or cannot make
a decision. 79

13 Evaluation of performance showing the throughput vs.
latency for basic Paxos and NetPaxos. 80

H2020-ICT-2014-1 Project No. 644960 6

WP2 / D2.1 ENDEAVOUR Version 1.0

1 Introduction

An objective of ENDEAVOUR is to research, develop, and evaluate an SDN
architecture for the network ecosystem of a large IXP and its members.
Most of the state-of-the-art on SDN focuses on single tenant environments,
mostly ignoring significant barriers for its adoption in large inter-domain
environments: namely, scalability, reliability, and distributed management.
Our approach to address these specific scientific and engineering challenges
focuses on two main activities of design and implementation:

• Distributed SDN Control Plane: Design and implement a
distributed SDN control plane that is capable of (1) supporting a
multi-user environment, (2) tolerating failures, and (3) scaling to the
typical user base of large IXPs.

• SDN Programming Abstractions: Design a scalable
implementation of programming abstractions able to express (1)
forwarding and QoS policies, (2) multi-authored policies including
mechanisms such as composition and conflict resolution, and
(3) monitoring primitives that, interfacing with the monitoring
techniques defined by WP3, collect and expose rich measurement
data for SDN applications.

This document presents the progress towards these objectives during
the first 6 months of the project. The rest of this document is organized as
follows. We first discuss relevant background regarding IXP environments
and review the requirements that the SDN control plane should address.
Note that since Deliverable 4.1 already focuses on the use cases and
their requirements, we here focus on general aspects of the SDN control
architecture (e.g., scalability, reliability) that form a basis to support a
plethora of specific use cases. Next, we describe the initial design of our
SDN control plane. Since the project is still at its early stage, we focus on
technical building blocks to the distributed SDN control plane that address
certain aspects of the challenges mentioned above. Future deliverables will
bridge the current gaps and illustrate how the various building blocks can
be combined to address specific use cases.

2 Characteristics of IXP Environments

What is an Internet eXchange Point (IXP)? An IXP is “a physical network
infrastructure operated by a single entity with the purpose to facilitate the

H2020-ICT-2014-1 Project No. 644960 7

WP2 / D2.1 ENDEAVOUR Version 1.0

exchange of Internet traffic between Autonomous Systems. The number of
Autonomous Systems connected should at least be three and there must
be a clear and open policy for others to join.” This definition is from the
Euro-IX organization and it introduces the minimum service offering of an
IXP, that is, an Ethernet switching platform supporting bridging domain
which allows any-to-any interconnection between members.

To have access to all of “The Internet”, Internet Service Providers (ISPs)
buy transit connectivity from global service providers also called Tier 1
providers. Tier 1 providers offer reachability to almost every Internet’s
network and they sell this transit connectivity to smaller ISPs. Small ISPs
are paying this transit access based on the amount of traffic exchanged as
generally they are using multiple transit upstream providers with at least
two Tier 1 providers to achieve redundancy and some degree of choice for
outbound traffic forwarding. When two ISPs are directly connected to each
other and exchange traffic among themselves, there is not transit cost. This
solution is viable if there is considerable traffic between the two networks.
Whilst upstream costs are reduced, there is a cost involved in providing
physical connection between the two ISP’s networks, and this must be
considered when calculating the savings by having a direct interconnection.
There are, however many thousands of ISPs in Europe alone. It would not
be cost effective, scalable or manageable to interconnect with all of them
individually.

Internet Exchange Points provide a solution to this problem. An IXP is
a single physical network infrastructure, to which many ISPs can connect.
Any ISP that is connected to the IXP can exchange traffic with any of the
other ISPs connected to the IXP, using a single physical connection to the
IXP, thus overcoming the scalability problem of individual interconnections.
Also, by enabling traffic to take a more direct route between many ISP
networks, an IXP can improve the efficiency of the Internet, resulting in a
better service for the end user.

IXPs are not, generally, involved in the peering agreements between
connected ISPs. Whom an ISP peers with, and the conditions of that
peering, are a matter for the two ISPs involved. IXPs do however have
requirements that an ISP must meet to connect to the IXP. Also, since
the physical network infrastructure is shared by all the connected ISPs, and
activities of one ISP can potentially affect the other connected ISPs, all IXPs
have rules that establish the correct usage of the IXP.

Today’s IXPs are all using Ethernet bridging with the MAC learning
algorithm maintaining at least a single broadcast domain to enable the IXP
members’ routers to connect with each others. On top of this interconnecting

H2020-ICT-2014-1 Project No. 644960 8

WP2 / D2.1 ENDEAVOUR Version 1.0

bridging domain, IXPs provide additional services, and adopt different
technologies and/or architectures for scaling and securing their production
environment. We review below possible technical solutions.

2.1 Interfaces Characteristics

IXPs have clear public rules for connecting to their infrastructure; this
section reviews the fundamentals.
The customer interface. A clear demarcation point between the IXP
services and the members is required. This can done either directly on the
exchange or via a common demarcation point. This rule of demarcation is
essential to determine the responsibility limits.
Ethernet physical interface. IXPs offer IEEE 802.3 Ethernet
connectivity on a common switch infrastructure. Service offerings need to
be available at least at the following IEEE defined rates (most seen rate
first):

• 802.3z 1GE,

• 802.3ae 10GE,

• 802.3ba 40G/100G.

Media type could vary from copper to multi- or mono- mode fiber.
Traffic allowed to be forwarded. Only specific frames are switched by
the fabric. The IXP fabric is forwards frames with the following Ethernet
types:

• 0x0800 – IPv4,

• 0x86dd – IPv6,

• 0x0806 – ARP.

MAC filtering. For security reason and to limit any other MAC to send
unauthorized traffic, IXPs apply MAC address locking mechanism at the
member interface port. Only the authorized and well known router address
member can be forwarded by the switching fabric.
Public VLANs. The IEEE 802.1q is a standard supporting Virtual
LANs (VLAN), using Ethernet frame tagging techniques, permitting to have
separated Layer 2 bridging domain on the same physical infrastructure (e.g.,
IXPs use VLANs to separate between IPv4 and IPv6 traffic).

H2020-ICT-2014-1 Project No. 644960 9

WP2 / D2.1 ENDEAVOUR Version 1.0

Private VLAN. Private traffic can be exchanged using a dedicated VLAN
for two or more members who want to privately interconnect. The private
VLANs use the same IEEE 802.1q standard but public traffic forwarded
by the IXP switches need to have precedence over all private traffic. IXP
members should dedicate and have separate physical interfaces for their
private traffic.

2.2 Interconnecting Links and Topology

IXPs are located in large and economically developed cities, where ISPs and
others operators (e.g., data centers, content providers) have infrastructures.
Multiple Point of Presence architecture. IXPs are rarely present
at a single location, also called Point of Presence (PoP). The PoPs are
interconnected through various redundant path. Different architectures and
distributed control plane protocol are used by IXPs to interconnect between
PoPs.
Layer 0 – Optical network. The IXP’s PoPs are interconnected with
optical fibers, which are subjected to stringent operational requirements
such as optical path redundancy, optical aggregation with wavelength
multiplexing. These requirements have pushed IXPs to use complex optical
equipment. Multiplexing and optical path failover technique are the primary
feature used here.

2.3 Layer 2 – Resiliency of Connectivity

The IXP switching platform needs a backplane capacity sufficiently large
to handle the aggregate traffic of all customers facing ports, without
oversubscription. If individual switching elements contain multiple switch
fabric modules, the same conditions apply during single component failures.

To maintain connectivity within the IXP fabric, IXPs typically use
distributed Layer 2 protocols. We review below common technologies.
Spanning Tree. Spanning Tree is an old technology, but still the
only cross-platform dynamic solution available to operators of IXPs for
dynamically managing multiple redundant links in their architecture.
The IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) provides fast
convergence in case of link failure. Member interfaces need to be configured
as end-stations who are permitted to send frames without any convergence
delay. RSTP has various drawbacks: for example, there is no load sharing
between links, backup links are not used to forward traffic and in some
conditions the convergence time is rather long.

H2020-ICT-2014-1 Project No. 644960 10

WP2 / D2.1 ENDEAVOUR Version 1.0

Operational requirements have driven IXPs to look into new overlay
architectures allowing them to resolve these scaling issues. The remainder
of this section presents various solutions, several of which are already in use
today.
Virtual Private LAN Services (VPLS). The current common
state-of-the-art for providing a loop-free topology is VPLS, as defined in
RFC4761 (VPLS using BGP signaling) and RFC4762 (VPLS using LDP
signaling) [71]. VPLS works by creating an Ethernet broadcast domain on
top of a mesh of Label Switched Paths (LSPs) in an MPLS (MultiProtocol
Label Switching) network. In addition to providing a loop-free topology,
VPLS also brings the possibility to balance traffic over multiple distinct
paths in the network, so that redundant links are always used simultaneously.
Transparent Interconnect of Lots of Links (TRILL). TRILL [102] is
another approach to optimize traffic flows in switched Layer 2 environments.
Much like a VPLS-based topology, TRILL provides an optimal forwarding
path through the network for unicast traffic in an “all links active” topology.
One of the advantages of TRILL is that it does not require overlaying the
Layer 2 service onto an IP substrate.
Virtual Extensible LAN (VXLAN). VXLAN [77] is a technique to tag
frames and transport them with UDP. VXLAN discovers and authenticates
tunnel endpoints dynamically end to end. The Border Gateway Protocol
(BGP) control plane is used to learn and distribute both MAC and IP
addresses to avoid the need for flood-and-learn mechanisms. VXLAN uses
multicast or unicast to minimize flooding and mitigate ARP flooding.
Ethernet VPN (EVPN). EVPN is an Ethernet Layer 2 VPN (Virtual
Private Network) [107] solution that uses BGP as control plane for MAC
address signaling and learning over the network as well as for accessing
topology and VPN endpoint discovery.

VPLS, VXLAN and EVPN are all running on top of a Layer 3 transport
network. The transport network can be constructed using a traditional
IGP routing protocol such as OSPF or IS-IS. These solutions come
with overheads as they use tagging techniques to extended the network
namespace.

2.4 Layer 3 Domain

The typical way to establish connectivity between two IXP members is
to establish a direct BGP session between two of their respective border
routers. Initially, if two IXP members wanted to exchange traffic via the
IXP’s switching fabric, they had to establish a bi-lateral BGP peering session

H2020-ICT-2014-1 Project No. 644960 11

WP2 / D2.1 ENDEAVOUR Version 1.0

at the IXP. However, as IXPs grew in size, to be able to exchange traffic with
most or all of the other members at an IXP and hence reap the benefits of its
own membership, a member’s border router had to maintain more and more
individual BGP sessions. This started to create administrative overhead,
operational burden, and the potential of pushing some router hardware to
its limit.
Route Server (RS). To simplify routing for its members, IXPs introduced
Route Servers [54, 59, 106] and offered them as a free value-added service
to their members. In short, an IXP RS is a process that collects routing
information from the RS’s peers or participants (i.e., IXP members that
connect to the RS), executes its own BGP decision process, and re-advertises
the resulting information (i.e., best route selection) to all of the RS’s peer
routers.

If a route server service is offered, it supports both IPv4 and IPv6
and 4-byte AS numbers. The AS number used for the route server
implementation is an unique AS number assigned by one of the RIRs.
For redundancy, at least two RS are operated and are normally located
in different PoP.
The IXP IP space. In order to be independent of any of the
connected parties, the IP space used on the “Public Exchange” is a Provider
Independent space or other IP space directly assigned by a IANA Regional
Internet Register (RIR). This applies to both IPv4 and IPv6. The IXP
operator is responsible for obtaining address space from the respective
RIR, as well as providing all material for justification, documentation, and
applicable fees as required by the RIR.

2.5 Characteristics of the DE-CIX Environment

In contrast to a generic IXP switching platform, the DE-CIX setup is
generally more complex. The topology currently consists of seven edge
switches (Alcatel Lucent 7950 XRS-20/401) at different data centers across
the entire city of Frankfurt and of four core switches. All edges are connected
to all four core switches. Smaller points of presence with only a few members
are connected to the DE-CIX infrastructure by smaller switches that are in
turn connected to the edge switches. All the DE-CIX switches are realized
with optical networking equipment (ADVA FSP3000R72) whereby the single
line speed is either 10 or 100 Gbps. The heaviest interconnects combine
several 100 Gbps interfaces to accommodate up to 800 Gbps links. For

1https://www.alcatel-lucent.com/products/7950-extensible-routing-system
2http://www.advaoptical.com/en/products/scalable-optical-transport/fsp-3000.aspx

H2020-ICT-2014-1 Project No. 644960 12

WP2 / D2.1 ENDEAVOUR Version 1.0

bundling several ports as a single logical link, the link aggregation control
protocol (IEEE 802.3ad) is utilized.

On top of this physical infrastructure a transparent Layer 3 network
(e.g., MPLS, LSP, VPLS-L2) emulates a Layer 2 broadcast domain for the
IXP members while providing the required redundancy and scalability in
terms of coping with growing traffic volumes. Redundancy is as crucial for
IXPs as for ISPs: it is paramount to be considered as a reliable provider
of Internet connectivity. Additionally, load balancing over the core is too
complex to be achieved with Layer 2 technologies only.

As the central control plane element, DE-CIX also operates a BGP
route server. It announces about 65,000 IP prefixes while around 80%
of its total traffic is sent towards those prefixes [106]. Considering these
significant numbers, DE-CIX operates two redundant active route servers
to whom the members must maintain an active BGP session. For further
redundancy a single hot-standby hardware machine as an additional backup
for either of the route servers is accommodated. All system operations,
adoptions and maintenance decisions are performed with special regards
to the importance of the route servers. For instance, the route server’s
configuration is generated every four hours from an internal repository
and deployed to one active route server only. The new configuration is
deployed in a soft reload that preserves BGP sessions but recalculates RIB
information. A number of checks is performed to verify its faultlessness,
e.g., number of prefixes per member, size of RIBs. Eventually, to assure
the quality of the announced routes (e.g., only announcing own prefixes or
ensuring next hop is the own IP) several filters based on IRR information
and RADB are implemented.

2.6 Summary

IXPs are interconnecting ISPs with each other directly without the upstream
transit costs of Tier 1 providers. Switching fabrics are the core service used
by today’s IXP. A variety of distributed Layer 2 protocols are used to
create these fabrics, depending on scale requirements. The Layer 2 / Layer
3 dichotomy is crucial for keeping neutrality trustiness at the IXP fabric.
IXP members want to keep their BGP configuration habits and be sure to
be treated the same as their competitors for all peerings through the same
IXP. IXPs offer Layer 3 services like Route Server to help their members
with a single multilateral peering. As such, route servers play an important
role for inter-domain routing in today’s Internet. It already implements
one important SDN paradigm: the data plane is separated from the control

H2020-ICT-2014-1 Project No. 644960 13

WP2 / D2.1 ENDEAVOUR Version 1.0

plane. This is a promising starting point for ENDEAVOUR.

3 Requirements of the ENDEAVOUR SDN
Architecture

In order to deploy SDN at IXPs, the SDN architecture needs to fulfill several
requirements. These requirements include functional requirements (i.e.,
the features required to control and manage the IXP network) as well as
scalability and reliability requirements. These consist of high availability,
high performance and resiliency to failures of different components.
Functional requirements. In Section 2, we reviewed certain functional
requirements of IXP environments that are nowadays well understood.
In addition, Euro-IX’s wishlist [56] documents today’s IXPs operational
requirements and several recent measurement studies [2,106] have also shed
light on certain key requirements. For example, the IXP implements and
exposes a simple Layer 2, plug and play semantics while it employs several
state-of-the-art technologies to provide necessary capabilities. For instance,
route servers are typically deployed at and operated by IXPs as a core
element to enable IXP members to peer with one another in a scalable
fashion.

In the 2015 annual forum of Euro-IX [40], Microsoft, a customer of
IXPs, explicitly states the future desired features of an IXP. Many of
them are conceptually similar in spirit to the fundamental element of
the SDN architecture such as a centralized management approach via a
single application programming interface (API) that supports operations
and maintenance, and a robust API to retrieve statistics and utilization
information.

Although the documented functional requirements might not fully
consider new applications and services that could be realized for
SDN-enabled IXPs (which ENDEAVOUR will consider), they provide an
initial set of guidelines to approach the following problem: how could one
operate an SDN-enabled IXP that is at least logically equivalent to an
existing IXP?

Moreover, as emerges from Deliverable 4.1, the literature shows that
beyond the functionality of current IXPs, members wish to customize
inter-domain routing in order to achieve concrete objectives such to optimize
traffic forwarding, select best peerings, and block DDoS traffic. On the
other hand, IXPs wish to increase efficiency of their switching fabric, lower
complexity and costs and offer new services.

H2020-ICT-2014-1 Project No. 644960 14

WP2 / D2.1 ENDEAVOUR Version 1.0

In summary, we gather the following functional requirements:

• Expose a switching fabric with an equivalent Layer 2 semantics to IXP
members.

• Maintain compatibility with BGP to exchange reachability
information.

• Enable IXP members to customize or override default BGP routing
behavior.

• Introduce a flexible data plane that enables fine-grained routing
decisions, filtering and monitoring.

Scalability and reliability requirements. A main difference of SDN
from the traditional network architecture is the decoupling of control plane
from the data plane. The control plane configures the data plane via a
standardized open interface such as OpenFlow [82, 94]. To provide better
opportunities for network-wide optimizations and reduce management
complexities, the control plane adopts a global view of network state, and so,
the control is usually centralized and manages the data plane of the entire
network.

However, this architecture creates a potential bottleneck at the controller
and results in the problem of controller scalability which limits the number
of tasks and the size of the network that can be served by a certain
controller. This problem is carefully discussed in [118]. Similar to other
large-scale systems, the scalability goes together with the problem on
reliability in terms of keeping the service highly available, high performance
and resilient to failures. Therefore, it is difficult to answer the question
about the equivalence between an SDN-enabled IXP and an existing IXP
without having a more precise, quantitative knowledge of its scalability and
reliability.

Today it is hard to predict what target numbers will ultimately meet
or exceed the bar for IXPs because these organizations have only recently
started SDN trials in labs and not enough information regarding real world
requirements exists. However, by the same token, IXPs will not deploy SDN
in their networks unless they are guaranteed a high performance, resilient
“IXP-grade” SDN control plane. On the other hand, the lack of a high
performance SDN control plane platform has been a big barrier to SDN
deployment and adoption.

This is the same problem currently faced by the ONOS project [91],
driven by the ON.Lab. ONOS is a SDN network operating system for service

H2020-ICT-2014-1 Project No. 644960 15

WP2 / D2.1 ENDEAVOUR Version 1.0

provider and mission critical networks, architected to provide a resilient,
high performance SDN control plane featuring northbound and southbound
abstractions and interfaces for a diversity of management, control, service
applications and network devices. ONOS was open sourced on December
5th, 2014.

Indeed, paraphrasing from a study of ONOS performance [90], building
an “IXP-grade” SDN control plane that supports these requirements is a
challenging design problem that requires thoughtful technical analysis of
the trade-offs between high availability, performance and scale as all three
are closely related. Moreover, high availability is a prerequisite for SDN
adoption in IXPs. While it is great that one can scale a SDN control plane
by introducing additional servers, it still needs to be complemented by the
control plane’s ability to automatically handle failures of individual servers.
One should also be able to perform software and hardware upgrades without
impacting overall system operation.

Despite the lack of clearly documented performance and availability
requirements, their study defines initial targets that according to the authors
will meet or exceed the bar for Service Provider networks. Working with
service providers has led them to the following characterization as a starting
point:

• 1 Million flow setups/sec.

• Less than 100 ms latency for both topology change events and
application requests (ideally, ∼10 ms or lower).

• Redundancy measures automatically take effect and the system
continues to operate with zero downtime.

• The performance of the system remain nominal and is proportional to
the number of resources currently at its disposal.

• When the system heals and the instances rejoin, the system
automatically rebalances workload to take advantage of the restored
capacity.

However, we only view this as a preliminary set of requirements that still
need to be refined as the work in this project advances the understanding of
specific use cases from which IXP operators and members stand to benefit.
We also avoid in this deliverable to make specific final recommendations
in terms of current SDN technology. We note instead that several viable
candidates exist including ONOS, Ryu, OpenDaylight, and more.

H2020-ICT-2014-1 Project No. 644960 16

WP2 / D2.1 ENDEAVOUR Version 1.0

The next section illustrates our preliminary SDN architecture. In
Section 10, we discuss the landscape of commercially available SDN
switches and how their characteristics currently address the switching fabric
requirements.

In addition, there are a few prior efforts that attempted to clarify,
motivate and address the requirements of SDN regarding high performance,
availability and scalability aspects. We review a few relevant ones below.

SDX [47] is an earlier attempt at an SDN-enabled IXP. In this work,
the authors proposed a virtual switch programming abstraction that allows
IXP customers to describe their intended policy in a high-level language
and to compile policies into forwarding rules. This work tackles some of the
scalability issues by reducing the complexity of data plane state and reducing
the compilation time of policies into forwarding rules. Consequently, it
highlights the importance of reducing the latency to update a data plane
state while maintaining consistency and isolation between different IXP
members. Later in Section 7 and 8, we detail our proposals for addressing
these problems.

To improve scalability and reliability of the service provider edge,
another recent work, Edgeplex [28], demonstrated an approach that is based
on sharding customer connections. The service provider edge is responsible
for connecting customers using standard protocols such as IP and BGP to
the service providers. In this respect, given the similarities with the Route
Server service, these techniques inform us about the requirements and design
principles for integrating the Route Server service in the SDN control plane
as this should be a scalable and easy to manage yet reliable service. Our
discussions with route server operators within DE-CIX indicated that with
the introduction of SDN at the IXP, there would be interest to improve
aspects of the Route Server service. While at this stage a solution is still
premature, we are considering the concept of running the Route Server
service as a distributed system that improves upon the current level of fault
tolerance when a route server fails and enables intelligent load-balancing
functionality.

As discussed, the IXP fabrics are Layer 2 broadcast domains, which
have by nature some side effects. All hosts belonging to the same broadcast
domain receive quite a significant amount of control packets (i.e., ARP
requests, DHCP requests, discovery protocols – CDP or LLDP). Broadcasts
packets increase the switches CPU utilization and decrease the overall
network security (i.e., ARP spoofing). CDP (Cisco Discovery Protocol)
packets in particular contain information about the network device, such
as the software version, IP address, platform, capabilities, and the native

H2020-ICT-2014-1 Project No. 644960 17

WP2 / D2.1 ENDEAVOUR Version 1.0

VLAN, increasing related security risks. Customer routers connected to
IXPs typically exchange traffic with many other routers on the fabric.
The larger the IXP, the higher the number of peers a router has. For
all these peers, the ARP cache entry needs to be regularly refreshed. In
addition, routers may have BGP sessions configured for peers that are
not active. All together, the amount of broadcast ARP traffic on a large
IXP fabric is already significant under normal circumstances. Even more
ARP traffic is seen in downtime situations, when many routers attempt
to resolve the IP addresses of peers that are not available because of a
network outage (i.e., ARP storm effect). Given the growing amount of
location discovery traffic under normal conditions, we believe that control
traffic reduction techniques are necessary when an exchange starts to scale.
ARP-Sponge [117] represents a solution to this problem but it suffers of
several limitations, which makes it undesirable for a large IXP. In Section 6,
we show a preliminary design of an SDN control mechanism to resolve the
broadcast domain flooding issues.

Finally, the recent work of Castro et al. [24] motivates us to adopt a
future looking vision when thinking about the scale of the SDN control
plane at an IXP, because SDN has great potential for enabling remote
peering. Remote peering is an emerging type of interconnection where an
IP network reaches and peers at a distant IXP via a Layer 2 provider, e.g.,
using MPLS VPNs. The remote-peering provider delivers traffic between
the Layer 2 switching infrastructure of the IXP and remote interface of
the customer. On the customer’s behalf, the remote-peering provider also
maintains networking equipment at the IXP to enable the remote network
to peer with other IXP members. Remote peering is present at a majority
of IXPs worldwide, and many of the IXP members at the largest IXPs are
indeed remote. By connecting distant networks and reselling port capacity
at the IXPs, remote peering providers open the doors to a more flexible
peering ecosystem. These considerations further highlight the importance
for the need to meet scalability and reliability requirements in our design of
the ENDEAVOUR SDN controller.

4 Preliminary SDN Architecture

At the core of the ENDEAVOUR architecture (see Figure 1), we envision
an IXP fabric that consists of two main components: a set of SDN-enabled
switches, which physically interconnects the IXP members with each other,
and a “network controller” entity, which manages the SDN switches.

H2020-ICT-2014-1 Project No. 644960 18

WP2 / D2.1 ENDEAVOUR Version 1.0

According to the SDN paradigm, the switches are responsible for
forwarding packets according to their own forwarding state (i.e., the set
of forwarding rules installed in each switch), which is not computed by the
switches themselves. Instead, the forwarding state computation is performed
by the network controller, which is a logically centralized independent entity
that acts as the “brain” of the fabric. It computes the forwarding state of
the network and installs it into each SDN switch.

The network controller provides to the IXP operators a high-level
interface that can be used to deploy customized applications on top of it.
Namely, the controller interface exposes to the network operator a logical
view of the physical network topology, it presents a coherent and global
picture of the network state, and it allows the operator to interact with the
switches via a set of high-level primitives. Such primitives can, for instance,
allow the network operator to move from one forwarding state to another
one without creating routing anomalies (e.g. forwarding loops, blackholes).
Roughly speaking, IXP operators leverage the network controller the same
way programmers interact with the operating system. As an example, if an
IXP operator is interested in deploying a novel service that provides “peering
recommendations” to its IXP members, then it can program it by leveraging
the interface exposed by the network controller.

In our vision, IXP members can benefit from these novel IXP services
that can be built on top of the ENDEAVOUR architecture by using their
own controller to communicate with the IXP controller. In any case, in order
to support backward compatibility, the SDN-enabled IXP fabric should still
handle interactions with IXP members that are running traditional protocols
(i.e., BGP) although certain advanced features may not be supported. This
can be done by integrating a Route Server within the network controller.

There are several benefits of replacing an old monolithic IXP fabric
by an SDN-enabled fabric. First, it introduces a clear separation of
concerns between data-plane (i.e., forwarding packets) and control-plane
(i.e., installing the forwarding state) functionalities. By decoupling the
control-plane functionalities from the physical switches to a logically
centralized controller, the network architecture achieves high network
modularity, which, in turn, leads to higher flexibility and ease of innovation.
Second, it frees network operators from the burden of tweaking their network
configurations by means of obscure and indirect mechanisms that are part
of traditional routing protocols. Third, both the IXP operators and the IXP
member operators can easily control the network behavior by writing their
own application software on top of the network controller.

This architecture can therefore meet the requirements set forth earlier.

H2020-ICT-2014-1 Project No. 644960 19

WP2 / D2.1 ENDEAVOUR Version 1.0

SDN	 Fabric

Member	 1

Member	 2

Member	 3

Member	 4

Network	 Controller

Decoupled	 control	
and	 data	 planes

New	 interfaces App App App Novel	 IXP	 services

Network	 Controller

Members’	 own	
solutions

Figure 1: Preliminary architecture of an SDN-enabled IXP.

The SDN data plane brings programmability that enables fine-grained
routing decisions, filtering and monitoring so that IXP members can
override default BGP behavior. The SDN control plane lowers management
complexity and enables new services, which can be realized through
programs running at the controller or interfaces exposed to the IXP
members.

5 Overview of Technical Building Blocks

We present several building blocks, which we expect are going to play
an important role in the creation of the ENDEAVOUR SDN-enabled
IXP. The first build block (Section 6) provides the design of a new IXP
fabric architecture addressing the scalability issues of a shared broadcast
domain. The next two building blocks (Section 7 and 8) focus on the
problem of updating network states while providing certain guarantees
including the correctness of the process and avoiding introducing congestion
in the network. The fourth building block (Section 9) considers the
issue of improving application performance by considering a co-design of
a software-defined network and a distributed application — in our case, the
Paxos consensus protocol.

H2020-ICT-2014-1 Project No. 644960 20

WP2 / D2.1 ENDEAVOUR Version 1.0

5.1 Efficient IXP Fabric

IXP fabrics are growing steadily. As a consequence of their size, both the
amount of broadcast and neighbor discovery (IPv6 related) traffic increases
and exposes the SDN controller to the risk of becoming overloaded during
ARP storm events.

In our first building block (Section 6) we introduce a new IXP fabric
architecture, where we posit that the divide between the interconnection
fabric and the content/service side requires a fundamentally different
approach to the management of IXP fabrics. We argue that shifting
intelligence from the control plane of current IXP fabrics to their data plane,
through SDN programmability, is the key point to improve their scalability,
reliability and manageability. We show how this delegation process can be
effectively implemented taking as example the ARP management problem.

5.2 Abstractions and Architectures for Network State
Updates

SDN is a paradigm that outsources the control of programmable network
switches to a set of software controllers. The most fundamental task of
these controllers is the correct implementation of the network policy, i.e.,
the intended network behavior. In essence, such a policy specifies the rules
by which packets must be forwarded across the network.

As discussed, correctness of forwarding behavior is a critical requirement
for IXP environments. However, in today’s IXPs, no technical solution
prevents the possibility that misconfigurations by the IXP operator or even
its members could bring down the IXP. Indeed, one of the project use
cases (in Task 4.2) is focusing on resolving the broadcast storm issue by
selectively filtering broadcast traffic within the IXP. Even very recently, in
an accident on May 2015 [5], a misconfiguration by an engineer at AMS-IX
placed a loop in the network that caused a disruption that lasted 10s of
minutes. During this period, many parties could not exchange traffic with
one another through our platform and therefore a number of websites were
not accessible.

We believe that an SDN-enabled IXP provides the opportunity to
develop rigorous, automated solutions to avoid several classes of such issues.
However, the scale of the environment as well as its multi-user nature, make
the problem challenging. Our approach consists of abstractions that isolate
the intention of updating network state from its execution, and efficient yet
correct by design strategies to implement network updates.

H2020-ICT-2014-1 Project No. 644960 21

WP2 / D2.1 ENDEAVOUR Version 1.0

In particular, our second building block (Section 7) studies a
distributed SDN control plane that enables concurrent and robust policy
implementation. We introduce a formal model describing the interaction
between the data plane and a distributed control plane (consisting of
a collection of fault-prone controllers). Then we formulate the problem
of consistent composition of concurrent network policy updates (termed
the CPC Problem). To anticipate scenarios in which some conflicting
policy updates must be rejected, we enable the composition via a natural
transactional interface with all-or-nothing semantics. We show that the
ability of an f -resilient distributed control plane to process concurrent policy
updates depends on the tag complexity, i.e., the number of policy labels
(a.k.a. tags) available to the controllers, and describe a CPC protocol with
optimal tag complexity f + 2.

Our third building block (Section 8) extends these concepts and provides
a hierarchical distributed architecture that allows network update to be done
in decentralized way. In which, the bottleneck at controller to coordinate
every single step of update no longer exists, every switch communicates
to notify the suitable time to do the update via a peer-to-peer data plane
architecture.

5.3 Network-Application Co-Design

SDN offers the tantalizing promise of tailoring networks directly to
the needs of distributed applications through increased programmability.
ENDEAVOUR considers this question in the context of designing
SDN-enabled mechanisms for defining and enforcing SLAs that span across
multiple locations/members of the IXP (e.g., customers connected to more
than one datacenter). Unfortunately, because the existing standardized
interfaces offer only limited functionality, few applications have been able to
benefit from the open interface. Thus, the question remains how distributed
applications can leverage SDN support, or more generally, what applications
need from the network.

Our fourth building block (Section 9) explores the possibility of
implementing the widely deployed Paxos consensus protocol in network
devices. We present two different approaches: (i) a detailed design
description for implementing the full Paxos logic in SDN switches, which
identifies a sufficient set of required OpenFlow extensions; and (ii) an
alternative, optimistic protocol which can be implemented without changes
to the OpenFlow API, but relies on assumptions about how the network
orders messages. Although neither of these protocols can be fully

H2020-ICT-2014-1 Project No. 644960 22

WP2 / D2.1 ENDEAVOUR Version 1.0

implemented without changes to the underlying switch firmware, we argue
that such changes are feasible in existing hardware. Moreover, we present
an evaluation that suggests that moving Paxos logic into the network would
yield significant performance benefits for distributed applications.

6 Umbrella Fabric

IXPs are typically implemented as very simple Layer 2 broadcast domains
to which customers connect their BGP routers. In addition, many IXPs
operate route servers [54], which facilitate multilateral peerings on the IXP
fabric.

The biggest dangers to a Layer-2 broadcast domain are network failures
and Ethernet loops who can cause the entire fabric to fail. Spanning tree
systems or MPLS architecture do scale and can in some circumstances
react quickly and gracefully to such circumstances. However in an IXP,
we wish to optimize for a fairly static set of connected devices (changing
only when a new customer router is physically installed or decommissioned),
while still quickly reacting to network failures. To prevent loops, IXPs
typically deploy MAC address based access control filters. These filters
ensure that, on a customer port, only traffic from the MAC address of the
connected customer router is accepted. This reduces noise from unwanted
traffic on the broadcast domain and eliminates Ethernet loops. Because
IXPs are relatively static environments, new MAC addresses only appear or
disappear from the fabric when a new router is connected or when a router
is disconnected. Since the access control filtering requires that all customer
MAC addresses are known to the IXP operator, it is possible to use them
to program the forwarding tables of the IXP fabric as well, eliminating the
need for active MAC address learning on the fabric. This opens the space
for an SDN-enabled infrastructure, where the controller can program the
devices thanks to its global knowledge of the network.

IXP customer routers come in many forms and sizes. They also differ
greatly in their operating system architecture. Some routers with weaker
CPUs or older operating systems have problems handling the large amount
of ARP traffic on larger IXP fabrics [117]. This would be significantly less
problematic if ARP requests for a specific customer router were not sent
to all customer ports. Ideally, the IXP fabric would send ARP and IPv6
Neighbour Discovery traffic only to the customer router for which the request
is meant.

Previous works have already demonstrated that OpenFlow could solve

H2020-ICT-2014-1 Project No. 644960 23

WP2 / D2.1 ENDEAVOUR Version 1.0

this problem [15, 100]. However, these solutions require an always active
controller or software daemon that processes the ARP and Neighbor
Solicitations, introducing scalability and stability concerns. The Umbrella
fabric adds the feasibility of a new Layer 2 SDN-enabled IXP fabric
addressing the issues of a shared broadcast domain using MAC manipulation
to shift some intelligence from the control plane to the data plane. We
justify the need of such an architecture to avoid the use of an active SDN
controller (or software daemon) processing broadcast packets which becomes
overloaded during ARP storm events. We envision a system where broadcast
packets are being directly tackled in the datapath, and the controller is
being only used to push the right rules into the switches thanks to its global
knowledge of the network. We think that our approach, called Umbrella,
can also improve the manageability and reliability of legacy IXPs. We
demonstrate how the Umbrella fabric, under certain conditions, can be
implemented with OpenFlow switches at the edge and legacy switches in
the core minimizing the overall replacement cost.

In the following, we present the Umbrella architecture (§6.1) with its
key benefits (§6.2). Finally, we discuss related works (§6.3) before giving a
summary of this work (§6.4).

6.1 Umbrella Architecture

In this section, we present Umbrella, a new IXP fabric architecture that
shifts some typical control plane operations to the data plane. The primary
design goal is to enhance the scalability and stability of legacy IXP fabrics,
taking advantage of the SDN paradigm. In particular, we aim for a network
architecture able to address the issues of a shared broadcast domain, which
scales on existing hardware, and does not require a central point of control
to run.

6.1.1 No more broadcast traffic

IXPs apply strict rules [3], [56] to limit the side effects of a Layer 2 shared
broadcast domain. They need to know the router MAC address of the
member that connects to the peering fabric. Only then the IXP can allocate
an ethernet port on the edge switch, an IP address from the peering IXP
IP Public Space [92] and configure a MAC filtering ACL with that MAC
address. As a consequence, the location of all the member’s routers is
known and does not change as dynamically as assumed by the Layer 2
protocols. This can be exploited to eliminate location discovery mechanisms

H2020-ICT-2014-1 Project No. 644960 24

WP2 / D2.1 ENDEAVOUR Version 1.0

based on broadcast packets (i.e., ARP request, IPv6 neighbor discovery).
In particular, the OpenFlow specifications allow to rewrite the destination
MAC address of a frame matching a given rule [94], enabling on-the-fly
translation of broadcast packets into unicast at the edge of the fabric. To
reduce the number of rules at the core switch level, we propose a new
encoding scheme for the destination MAC address. Umbrella edge switches
explicitly write the per-hop port destination into the destination MAC field
of the packet. The first byte of the MAC address represents the output
port the core switch has to use. Such kind of encoding scheme comes with
a limitation: it is possible to represent a maximum number of 256 output
ports per hop. This is not a real limitation though, as more bits in the port
encoding (thus mapping more physical ports) can be used. With Umbrella,
the number of flow table entries for a core switch will scale with the number
of active ports in the IXP fabric. This aspect is important to tackle the
address resolution problem directly from within the data plane.

Figure 2: Typical topology of a medium to large IXP.

Let’s take as example the topology shown in Figure 2 and consider the
case where edge-3 is connected to a core switch through port number 2
and to router-b through port number 3. Finally, let’s take the case where

H2020-ICT-2014-1 Project No. 644960 25

WP2 / D2.1 ENDEAVOUR Version 1.0

router-a sends an ARP request (i.e., broadcast message) to router-b.
Edge-1 receives the frame, rewrites the destination MAC address using the
following encoding: 02:03:00:00:00:00 and forwards it to the right core
switch. Once the frame reaches the core, it is redirected to output port 2
(i.e., the forwarding in the core is based on the most significant byte) to the
edge-3 switch. Finally, the edge-3 switch forwards the frame through the
output port indicated in the second byte of the MAC address and rewrites
that field with the real MAC address of router-b, which is knowns. In case
the source and destination are directly connected to the same edge switch,
no encoding is needed, and the broadcast destination address is directly
replaced by the target MAC destination address by the edge switch. In an
IPv6 scenario, the OpenFlow match pattern indicated in the edge switch
needs to be on the IPv6 ND target field of the incoming ICMPv6 Neighbour
Solicitation packet [84]. The matching table on the edge switch should
maintain an association between IPv6 addresses and their location, as in
the IPv4 case.

6.1.2 Towards a segment routing-like approach

The proposed forwarding mechanism allows to reuse legacy switches in the
core, thus limiting the burden (and costs) to upgrade an IXP fabric to the
Umbrella architecture. In this scenario, a core switch just needs to forward
packets based on simple access filtering rules, while the edge switches need
to have OpenFlow-like capabilities to rewrite the Layer2 destination field.

While this approach is directly applicable to fabrics that rely on a single
hop in the core (as in AMS-IX and DE-CIX), it is not with multiple hops (as
in LINX and MSK-IX). With a single hop, the core switch would expect the
output port encoded in the most significant byte of the destination MAC
address. In the multi-hop case, since a packet can traverse multiple core
switches, a new encoding scheme is needed to differentiate the output ports
at different core switches.

Figure 3 shows an example with multiple hops in the core. To reach
edge-d, edge-a needs to cross two different core switches through path

b. This is a fairly common case in hypercube-like topologies, as the ones
adopted by LINX or MSK-IX. In this scenario, following the Umbrella
approach, it is straightforward to propose an encoding of the L2 destination
address where the most significant byte refers to the output port of the
first core switch (i.e., core-a), the second byte to the second switch (i.e.,
core-b), and so on. Unfortunately, depending on the actual route being
used, a core switch might be the first or the second on the path, making the

H2020-ICT-2014-1 Project No. 644960 26

WP2 / D2.1 ENDEAVOUR Version 1.0

Figure 3: Example of multi-hop in the core.

proposed approach unfeasible. Another solution is to take into account also
the input port of the frame in the forwarding rules installed in the core
switches. Given the input port, it is possible to know where the switch is
in the path and therefore looking at the right byte into the L2 destination
address. Unfortunately, this approach may not work in arbitrary topologies.
Moreover, it experiences a rule explosion in the core, i.e., the number of
forwarding entries grows quadratically with the number of possible input
ports, making such an idea not very attractive.

These problems can be addressed using a segment routing-like approach.
Segment Routing leverages the source routing paradigm, keeping the
Umbrella spirit, where the first edge switch is in charge of selecting the
path. Segment Routing consists in each node steering a packet through an
ordered list of instructions, called segments, in this case the output ports.
An ordered list of segments is encoded as a stack of labels. The segment
to be processed is on the top of the stack, and popped upon completion of
a segment.When a new frame reaches the fabric, it has to pass through a
first edge switch in charge of rewriting the MAC destination address with a
ordered list of output ports. Each port refers to a different core switch on
the path towards the destination.When a core switch receives the frame, it
looks up the most significant byte of the address to get the destination output
port and rewrites the address by shifting the value to make the second byte
the new most significant one. Each switch needs only to look at the most
significant byte of the address, no matter where it is on the path toward the
destination. After the lookup, the address must also be rewritten, making

H2020-ICT-2014-1 Project No. 644960 27

WP2 / D2.1 ENDEAVOUR Version 1.0

this solution feasible only when OpenFlow-enabled switches are used in the
core. Every core switch must have 2 action tables: forwarding and copy-field.
This solution comes with two main practical limitations:

• The maximum number of output ports that can be addressed per-hop
is 256, as we embed the output port for each core switch in the most
significant byte of the Layer2 destination address.

• The maximum number of hops inside the IXP must be less of 6, as we
use the 6 bytes of the MAC address to embed at the edge the overall
path of the frame.

Beyond these practical considerations, Umbrella should actually be seen
more as a generic approach for IXP fabric operation, rather than a specific
solution to Layer2 issues. We believe that the general concept of Umbrella
is its main strength, i.e., offloading the control plane with a more intelligent
data plane.

6.2 Key benefits

Umbrella has been designed to be flexible. Indeed, it can be made Layer
3 neutral or service (i.e., application) oriented, depending on the settings
being used. It addresses the issues of a shared broadcast domain using Layer
2 manipulation at the edge to enhance legacy fabric reliability. This section
discusses the key benefits that we believe Umbrella brings at the IXP.
Scalability. Most legacy IXP architectures alleviate ARP storms through
the ARP Sponge server approach. At the same time, pure Layer 2
SDN-based architectures leave to the controller the processing of location
discovery traffic (i.e., ARP and NDv6). Both solutions suffer from scalability
issues given the growth of IXP fabrics in terms of new MAC addresses leading
to a constant increase of broadcast traffic.
No central point of failure. Solutions relying on a single point for
common operations, i.e., the controller for SDN-based architectures and
ARP Sponge server for legacy IXPs, are subject to the single point of failure
problem. Umbrella does not need the constant presence of the controller for
such operations. The controller works in a pure proactive mode and it is
required only to add, remove or change a router MAC entry at the edge.
Given the static nature of IXPs in terms of routing [4], the controller does
not have a central role in the Umbrella approach.
Service-orientated IXP operators. The segment-routing nature
of the forwarding mechanism opens the possibility of making the IXP

H2020-ICT-2014-1 Project No. 644960 28

WP2 / D2.1 ENDEAVOUR Version 1.0

fabric service-orientated. A service-orientated IXP operator could create
catalogs of network resources and related policies (e.g., QoS parameters
and bandwidth) to which applications can be applied as they move into
the network. As the path inside the IXP fabric is configured at the edge
switch, it is possible to configure different paths for different applications,
or redirect some flows to different paths depending on the activated services
(e.g., firewalling, quality of service, monitoring). Note that this is just a
feature that can be enabled. Indeed, Umbrella can also be used in a totally
Layer 3 (and above) neutral way, as currently done by IXPs.
Compatibility with legacy switches. As discussed in the previous
section, if the topology being used in the IXP has only one hop in the
core, legacy switches with MAC policy based routing access lists can be
used in the core with Umbrella. Indeed, no additional feature than bitmask
Layer 2 destination matching and forwarding actions are applied in the core,
thus making the architecture compatible even with non-OpenFlow compliant
switches.
Pseudo-wire nature. Pseudo-wire3 is an emulation of a point-to-point
connection over a packet-switching network. As discussed above, with
Umbrella, all the broadcast traffic (both ARP IPv4 and ICMPv6 ND) is
converted to unicast at the edge, solving problems related to a shared
broadcast domain. Umbrella guarantees that each of the IXP members
receives only the traffic it is supposed to see, also saving computational
power at the edge for the processing and analysis of unwanted traffic (i.e.,
broadcast packets).
Visibility. In Umbrella, the actual path of packets is encoded in the
Layer2 destination address. This implies full visibility of the forwarding
paths inside the IXP fabric, which can be exploited to improve data plane
troubleshooting, and therefore general IXP operator management.

6.3 Related Works

The idea of introducing OpenFlow in the IXP world is recent. Gupta
et al. [47] aims to develop an SDN exchange point (SDX) to enable
more expressive policies than conventional hop-by-hop, destination-based
forwarding. The proposed solution shows that it can implement
representative policies for hundreds of participants who advertise full routing
tables while achieving sub-second convergence in response to configuration
changes and routing updates. However, it is not clear how problems related

3http://tools.ietf.org/html/rfc3985

H2020-ICT-2014-1 Project No. 644960 29

http://tools.ietf.org/html/rfc3985

WP2 / D2.1 ENDEAVOUR Version 1.0

to Ethernet loops and large amount of ARP traffic are handled.
Stringer et al. [114], with the Cardigan project, implement a hardware

based, default deny policy, capable of restricting traffic based on RPKI
verification of routes advertised by devices connected to the fabric. While
this approach offers the required protections for a stable IXP fabric, it is less
suitable for IXPs that wish to remain neutral with regards to IP forwarding.

Enabling MAC-based routing in OpenFlow-based network is a fairly
new field of research. Schwabe et al. [110] show that the destination MAC
address can be used as a universal label in SDN environments and the ARP
caches of hosts can exploited as an ingress label table, reducing the size
of the forwarding tables of network devices. Agarwal et al. [1] demonstrate
that, using destination MAC addresses as opaque forwarding labels, an SDN
controller can leverage large MAC forwarding tables to manage a plethora
of fine-grained paths. While these approaches have been shown to perform
well in large-scale networks, they seems less suitable in IXP environments,
where problems related to Ethernet loops and large amount of ARP traffic
limit the scalability of the entire system (especially the SDN controller). To
this end, we address in this paper the issues of a shared broadcast domain
using Layer 2 manipulation at the edge.

6.4 Summary

We introduced the design of Umbrella: a new IXP fabric architecture. The
primary motivation behind Umbrella was to directly address today’s IXPs
operational requirements, as expressed in Euro-IX’s wishlist [56] focused
on reliability and network management. We designed a new fabric for
IXPs that fullfills their technical and operational requirements as well as
their culture (e.g., neutrality). To design such a fabric, we proposed an
OpenFlow-based IXP network architecture. Umbrella takes advantages
of the SDN programmability to address the issues of a shared broadcast
domain, shifting some intelligence from the control plane of current IXP
fabrics to their data plane. We introduced a new MAC base routing in
the core, using Layer 2 manipulation at the edge to enhance legacy fabric
reliability. It is scalable, enhances the current fabric visibility and can be
used in a totally Layer 3 (and above) neutral way (as currently done by
IXPs), or could be used in the future for service-oriented IXPs. We see
Umbrella as a first step towards SDN architectures less dependent on the
control plane, providing reliability by exploiting the data plane capabilities
of SDN.

H2020-ICT-2014-1 Project No. 644960 30

WP2 / D2.1 ENDEAVOUR Version 1.0

7 Transactional Network Updates

The emerging paradigm of Software-Defined Networking (SDN) promises
to simplify network management and enable building networks that meet
specific, end-to-end requirements. In SDN, the control plane (a collection of
network-attached servers) maintains control over the data plane (realized
by programmable, packet-forwarding switches). Control applications
operate on a global, logically-centralized network view, which introduces
opportunities for network-wide management and optimization. This view
enables simplified programming models to define a high-level network policy,
i.e., the intended operational behavior of the network encoded as a collection
of forwarding rules that the data plane must respect.

While the notion of centralized control lies at the heart of SDN,
implementing it on a centralized controller does not provide the required
levels of availability, responsiveness and scalability. How to realize a robust,
distributed control plane is one of the main open problems in SDN and
to solve it we must deal with fundamental trade-offs between different
consistency models, system availability and performance. Designing a
resilient control plane becomes therefore a distributed-computing problem
that requires reasoning about interactions and concurrency between the
controllers while preserving correct operation of the data plane.

In this work, we consider the problem of consistent installation of
network-policy updates (i.e., collections of state modifications spanning
one or more switches)—one of the main tasks any network control plane
must support. We consider a multi-authorship setting [42] where multiple
administrators, control applications, or end-host applications may want to
modify the network policy independently at the same time, and where a
conflict-free installation must be found.

We assume that we are provided with a procedure to assemble
sequentially arriving policy updates in one (semantically sound) composed
policy (e.g., using the formalism of [6]). Therefore, we address here the
challenge of composing concurrent updates, while preserving a property
known as per-packet consistency [105]. Informally, we must guarantee that
every packet traversing the network must be processed by exactly one global
network policy, even throughout the interval during which the policy is
updated—in this case, each packet is processed either using the policy in
place prior to the update, or the policy in place after the update completes,
but never a mixture of the two. At the same time, we need to resolve conflicts
among policy updates that cannot be composed in a sequential execution.
We do this by allowing some of the update requests to be rejected entirely,

H2020-ICT-2014-1 Project No. 644960 31

WP2 / D2.1 ENDEAVOUR Version 1.0

and requiring that no data packet is affected by a rejected update.
We make the following contributions. Our first contribution is a

formal model of SDN under fault-prone, concurrent control. We then
focus on the problem of per-packet consistent updates [105], and introduce
the abstraction of Consistent Policy Composition (CPC), which offers a
transactional interface to address the issue of conflicting policy updates.
We believe that the CPC abstraction, inspired by the popular paradigm of
software transactional memory (STM) [112], exactly matches the desired
behavior from the network operator’s perspective, since it captures the
intuition of a correct sequential composition combined with optimistic
application of policy updates. We term this approach software transactional
networking [20].

We then discuss different protocols to solve the CPC problem. We
present FixTag, a wait-free algorithm that allows the controllers to directly
apply their updates on the data plane and resolve conflicts as they progress
installing the updates. While FixTag tolerates any number of faulty
controllers and does not require them to be strongly synchronized (thus
improving concurrency of updates), it incurs a linear tag complexity in the
number of possible policies and their induced paths (which may grow to
super-exponential in the network size).

We then present a more sophisticated protocol called ReuseTag, which
uses the replicated state-machine approach to implement a total order on
to-be-installed policy updates. Given an upper bound on the maximal
network latency and assuming that at most f controllers can fail, we show
that ReuseTag achieves an optimal tag complexity f + 2.

Our work also informs the networking community about what can
and cannot be achieved in a distributed control plane. In particular, we
derive a minimal requirement on the SDN model without which CPC is
impossible to solve. From the distributed-computing perspective, we show
that the SDN model exhibits concurrency phenomena not yet observed
in classical distributed systems. For example, even if the controllers
can synchronize their actions using consensus [51], complex interleavings
between the controllers’ actions and packet-processing events prevent them
from implementing CPC with constant tag complexity (achievable using one
reliable controller).

To the best of our knowledge, this work initiates an analytical study
of a distributed and fault-tolerant SDN control plane. We keep our
model intentionally simple and focus on a restricted class of forwarding
policies, which is sufficient to highlight intriguing connections between our
SDN model and conventional distributed-computing models, in particular,

H2020-ICT-2014-1 Project No. 644960 32

WP2 / D2.1 ENDEAVOUR Version 1.0

STM [112]. One can view the data plane as a shared-memory data
structure, and controllers can be seen as read/write processes, modifying
the forwarding rules applied to packets at each switch. The traces of
packets constituting the data-plane workload can be seen as “read-only”
transactions, reading the forwarding rules at a certain switch in order to
“decide” which switch state to read next. Interestingly, since in-flight
packets cannot be dropped (unless explicitly intended) nor delayed, these
read-only transactions must always commit, in contrast with policy update
transactions. This model hence introduces an interesting new kind of
atomicity requirement.

Put in perspective, our definition of concurrent and consistent
composition of policy updates can be seen as an instance of transactional
network management. Indeed, in a dynamic system, where both control and
data plane are subject to changes (policy modifications, workload variations,
failures), it is handy for a control application to have operations with atomic
(all-or-nothing) guarantees. This way control applications may “program”
the network in a sequential manner, maintain consistent evaluations of
network-wide structures, and easily compose network programs [22].

In the following, we first introduce our model (§7.1). We then
formulate the CPC problem (§7.2) and describe our CPC solutions and
their complexity bounds. We then show that under weaker port models, it
is impossible to solve CPC (§7.4). We discuss related work (§7.5) before
giving a summary of this work (§7.6).

7.1 Modeling Software-Defined Networks

We consider a setting where different users (i.e., policy authors or
administrators) can issue policy update requests to the distributed SDN
control plane. We now introduce our SDN model as well as the policy
concept in more detail.

Control plane. The distributed control plane is modeled as a set of
n ≥ 2 controllers, p1, . . . , pn. The controllers are subject to crash failures: a
faulty controller stops taking steps of its algorithm. A controller that never
crashes is called correct and we assume that there is at least one correct
controller. We assume that controllers can communicate among themselves
(e.g., through an out-of-band management network) in a reliable but
asynchronous (and not necessarily FIFO) fashion, using message-passing.
Moreover, the controllers have access to a consensus abstraction [43] that
allows them to implement, in a fault-tolerant manner, any replicated state

H2020-ICT-2014-1 Project No. 644960 33

WP2 / D2.1 ENDEAVOUR Version 1.0

machine, provided its sequential specification [51].4

Data plane. Following [105], we model the data plane as a set P of ports
and a set L ⊆ P × P of directed links. A hardware switch is represented
as a set of ports, and a physical bi-directional link between two switches A
and B is represented as a set of directional links, where each port of A is
connected to the port of B facing A and every port of B is connected to the
port of A facing B.

We additionally assume that P contains two distinct ports, World and
Drop, which represent forwarding a packet to the outside of the network (e.g.,
to an end-host or upstream provider) and dropping the packet, respectively.
A port i /∈ {World,Drop} that has no incoming links, i.e., @j ∈ P : (j, i) ∈ L
is called ingress, otherwise the port is called internal. Every internal port
is connected to Drop (can drop packets). A subset of ports are connected
to World (can forward packets to the outside). World and Drop have no
outgoing links: ∀i ∈ {World,Drop}, @j ∈ P : (i, j) ∈ L.

The workload on the data plane consists of a set Π of packets. (To
distinguish control-plane from data-plane communication, we reserve the
term message for a communication involving at least one controller.) In
general, we will use the term packet canonically as a type [105], e.g.,
describing all packets (the packet instances or copies) matching a certain
header; when clear from the context, we do not explicitly distinguish between
packet types and packet instances.

Port queues and switch functions. The state of the network is
characterized by a port queue Qi and a switch function Si associated
with every port i. A port queue Qi is a sequence of packets that are,
intuitively, waiting to be processed at port i. A switch function is a map
Si : Π→ Π× P , that, intuitively, defines how packets in the port queue Qi
are to be processed. When a packet pk is fetched from port queue Qi, the
corresponding located packet, i.e., a pair (pk′, j) = Si(pk) is computed and
the packet pk′ is placed to the queue Qj .

We represent the switch function at port i, Si, as a collection of rules.
Operationally, a rule consists of a pattern matching on packet header fields
and actions such as forwarding, dropping or modifying the packets. We
model a rule r as a partial map r : Π → Π × P that, for each packet pk in
its domain dom(r), generates a new located packet r(pk) = (pk′, j), which
results in pk′ put in queue Qj such that (i, j) ∈ L. Disambiguation between
rules that have overlapping domains is achieved through a priority level, as

4The consensus abstraction can be obtained, e.g., assuming eventually synchronous
communication [39] or the eventual leader (Ω) and quorum (Σ) failure detectors [26,37].

H2020-ICT-2014-1 Project No. 644960 34

WP2 / D2.1 ENDEAVOUR Version 1.0

discussed below. We assume that every rule matches on a header field called
the tag, which therefore identifies which rules apply to a given packet. We
also assume that the tag is the only part of a packet that can be modified
by a rule.

Port operations. We assume that a port supports an atomic execution of
a read, modify-rule and write operation: the rules of a port can be atomically
read and, depending on the read rules, modified and written back to the port.
Formally, a port i supports the operation: update(i, g), where g is a function
defined on the sets of rules. The operation atomically reads the state of the
port, and then, depending on the state, uses g to update it and return a
response. For example, g may involve adding a new forwarding rule or a
rule that puts a new tag τ into the headers of all incoming packets.

Policies and policy composition. Finally we are ready to define the
fundamental notion of network policy. A policy π is defined by a domain
dom(π) ⊆ Π, a priority level pr(π) ∈ N and, for each ingress port, a unique
forwarding path, i.e., a loop-free sequence of piecewise connected ports that
the packets in dom(π) arriving at the ingress port should follow. More
precisely, for each ingress port i and each packet pk ∈ dom(π) arriving at
port i, π specifies a sequence of distinct ports i1, . . . , is that pk should follow,
where i1 = i, ∀j = 1, . . . , s − 1, (ij , ij+1) ∈ L and is ∈ {World,Drop}. The
last condition means that each packet following the path eventually leaves
the network or is dropped.

We call two policies π and π′ independent if dom(π) ∩ dom(π′) = ∅.
Two policies π and π′ conflict if they are not independent and pr(π) =
pr(π′). Now a set U of policies is conflict-free if no two policies in U
conflict. Intuitively, the priority levels are used to establish the order
in between non-conflicting policies with overlapping domains: a packet
pk ∈ dom(π) ∩ dom(π′), where pr(π) > pr(π′), is processed by policy π.
Conflict-free policies in a set U can therefore be composed : a packet arriving
at a port is treated according to the highest priority policy π ∈ U such that
pk ∈ dom(π).

Modeling traffic. The traffic workload on our system is modeled using
inject and forward events defined as follows:

• inject(pk, j): the environment injects a packet pk to an ingress port j
by adding pk to the end of queue Qj , i.e., replacing Qj with Qj · pk
(i.e., we add pk to the end of the queue).

• forward(pk, j, pk′, k), j ∈ P : the first packet in Qj is processed
according to Sj , i.e., if Qj = pk · Q′ (i.e., pk is the first element

H2020-ICT-2014-1 Project No. 644960 35

WP2 / D2.1 ENDEAVOUR Version 1.0

of the queue), then Qj is replaced with Q′ and Qk is replaced with
Qk · pk′, where r(pk) = (pk′, k) and r is the highest-priority rule in Sj
that can be applied to pk.

Algorithms, histories, and problems. Each controller pi is assigned an
algorithm, i.e., a state machine that (i) accepts invocations of high-level
operations, (ii) accesses ports with read-modify-write operations, (iii)
communicates with other controllers, and (iv) produces high-level responses.
The distributed algorithm generates a sequence of executions consisting of
port accesses, invocations, responses, and packet forward events. Given an
execution of an algorithm, a history is the sequence of externally observable
events, i.e., inject and forward events, as well as invocations and responses
of controllers’ operations.

We assume an asynchronous fair scheduler and reliable communication
channels between the controllers: in every infinite execution, no packet
starves in a port queue without being served by a forward event, and every
message sent to a correct controller is eventually received.

A problem is a set P of histories. An algorithm solves a problem P if the
history of its every execution is in P. An algorithm solves P f -resiliently
if the property above holds in every f -resilient execution, i.e., in which at
most f controllers take only finitely many steps. An (n−1)-resilient solution
is called wait-free.

Traces and packet consistency. In a history H, every packet injected
to the network generates a trace, i.e., a sequence of located packets: each
event ev = inject(pk, j) in E results in (pk, j) as the first element of the
sequence, forward(pk, j, pk1, j1) adds (pk1, j1) to the trace, and each next
forward(pkk, jk, pkk+1, jk+1) extends the trace with (pkk+1, jk+1), unless jk ∈
{Drop,World} in which case we extend the trace with (jk) and say that the
trace terminates. Note that in a finite network an infinite trace must contain
a cycle.

Let ρev,H denote the trace corresponding to an inject event ev =
inject(pk, j) in a history H. A trace ρ = (pk1, i1), (pk2, i2), . . . is consistent
with a policy π if pk1 ∈ dom(π) and (i1, i2, . . .) ∈ π.

Tag complexity. It turns out that what can and what cannot be achieved
by a distributed control plane depends on the number of available tags,
used by data plane switches to distinguish packets that should be processed
by different policies. Throughout this work, we will refer to the number
of different tags used by a protocol as the tag complexity. Without loss
of generality, we will typically assume that tags are integers {0, 1, 2, . . .},
and our protocols seek to choose low tags first; thus, the tag complexity

H2020-ICT-2014-1 Project No. 644960 36

WP2 / D2.1 ENDEAVOUR Version 1.0

is usually the largest used tag number x, throughout the entire (possibly
infinite) execution of the protocol and in the worst case.

Monitoring oracle. In order to be able to reuse tags, the control plane
needs some feedback from the network about the active policies, i.e., for
which policies there are still packets in transit. We use an oracle model
in this work: each controller can query the oracle to learn about the tags
currently in use by packets in any queue. Our assumptions on the oracle
are minimal, and oracle interactions can be asynchronous. In practice, the
available tags can simply be estimated by assuming a rough upper bound
on the transit time of packets through the network.

7.2 The CPC Problem

Now we formulate our problem statement. At a high level, the
CPC abstraction of consistent policy composition accepts concurrent
policy-update requests and makes sure that the requests affect the traffic
as a sequential composition of their policies. The abstraction offers
a transactional interface where requests can be committed or aborted.
Intuitively, once a request commits, the corresponding policy affects every
packet in its domain that is subsequently injected. But in case it cannot
be composed with the currently installed policy, it is aborted and does not
affect a single packet. On the progress side, we require that if a set of policies
conflict, at least one policy is successfully installed. We require that each
packet arriving at a port is forwarded immediately ; i.e., the packet cannot
be delayed, e.g., until a certain policy is installed.

CPC Interface. Formally, every controller pi accepts requests applyi(π),
where π is a policy, and returns acki (the request is committed) or nacki
(the request is aborted).

We specify a partial order relation on the events in a history H, denoted
<H . We say that a request req precedes a request req′ in a history H, and we
write req <H req′, if the response of req appears before the invocation of req′

in H. If none of the requests precedes the other, we say that the requests
are concurrent. Similarly, we say that an inject event ev precedes (resp.,
succeeds) a request req in H, and we write ev <H req (resp., req <H ev), if
ev appears before the invocation (resp., after the response) of req in H. Two
inject events ev and ev′ on the same port in H are related by ev <H ev′ if
ev precedes ev′ in H.

An inject event ev is concurrent with req if ev 6<H req and req 6<H ev. A
history H is sequential if in H, no two requests are concurrent and no inject

H2020-ICT-2014-1 Project No. 644960 37

WP2 / D2.1 ENDEAVOUR Version 1.0

switch
1

switch 3

switch
2

apply(π1) apply(π2) apply(π3)

p1 p2 p3

(a)

sw 1
sw 2
sw 3

p1
p2
p3

[]
[]

[]

apply(π1)
apply(π2)

apply(π3) nack

ack
ack

Time

[]
[]

apply(π1)

apply(π2) ack

ack

Time

=~H H'

(b)

Figure 4: Example of a policy composition with a 3-controller control plane
and 3-switch data plane (a). The three controllers try to concurrently install
three different policies π1, π2, and π3. We suppose that π3 is conflicting with
both π1 and π2, so π3 is aborted (b). Circles represent data-plane events (an
inject event followed by a sequence of forward events). Next to the history H
(shown on (b) left) we depict its “sequential equivalent” HS (shown on (b)
right). In the sequential history, no two requests are applied concurrently.

event is concurrent with a request.
Let H|pi denote the local history of controller pi, i.e., the subsequence

of H consisting of all events of pi. We assume that every controller is
well-formed : every local history H|pi is sequential, i.e., no controller accepts
a new request before producing a response to the previous one. A request
issued by pi is complete in H if it is followed by a matching response (acki
or nacki); otherwise it is called incomplete. A history H is complete if every
request is complete in H. A completion of a history H is a complete history
H ′ which is like H except that each incomplete request in H is completed
with ack (intuitively, this is necessary if the request already affected packets)
or nack inserted somewhere after its invocation.

Two histories H and H ′ are equivalent if H and H ′ have the same sets
of events, for all pi, H|pi = H ′|pi, and for all inject events ev in H and H ′,
ρev,H = ρev,H′ .

Sequentially composable histories. A sequential complete history H is
legal if these two properties are satisfied: (1) a policy is committed in H if
and only if it does not conflict with the set of policies previously committed
in H, and (2) for every inject event ev = inject(pk, j) in H, the trace ρev,H
is consistent with the composition of all committed policies that precede ev
in H.

H2020-ICT-2014-1 Project No. 644960 38

WP2 / D2.1 ENDEAVOUR Version 1.0

Definition 1 (Sequentially composable history) We say that a
complete history H is sequentially composable if there exists a legal
sequential history S such that (1) H and S are equivalent, and (2) <H⊆<S.

Intuitively, Definition 1 implies that the traffic in H is processed as if the
requests were applied atomically and every injected packet is processed
instantaneously. The legality property here requires that only committed
requests affect the traffic. Moreover, the equivalent sequential history S
must respect the order in which non-concurrent requests take place and
packets arrive in H.

Definition 2 (CPC) We say that an algorithm solves the problem of
Consistent Policy Composition (CPC) if for its every history H, there exists
a completion H ′ such that:

• Consistency: H ′ is sequentially composable.

• Termination: Eventually, every correct controller pi that accepts a
requests applyi(π), returns acki or nacki in H.

Note that, for an infinite history H, the Consistency and Termination
requirements imply that an incomplete request in H can only cause aborts of
conflicting requests for a finite period of time: eventually it would abort or
commit in a completion of H and if it aborts, then no subsequent conflicting
requests will be affected. As a result we provide an all-or-nothing semantics:
a policy update, regardless of the behavior of the controller that installs it,
either eventually takes effect or does not affect a single packet. Figure 4
gives an example of a sequentially composable history.

7.3 CPC Solutions and Complexity Bounds

We now discuss how the CPC problem can be solved and analyze the
complexity its solutions incur. We begin with a simple wait-free algorithm,
called FixTag, which implicitly orders policies at a given ingress port.
FixTag incurs a linear tag complexity in the number of all possible paths
that the proposed policies may stipulate; this is the best we can hope for any
protocol without feedback from the network. Then we present ReuseTag,
an f -resilient algorithm with tag complexity f + 2, which is based on an
estimate on the maximal packet latency. We also show that ReuseTag
is optimal, i.e., no CPC solution admits smaller tag complexity for all
networks.

H2020-ICT-2014-1 Project No. 644960 39

WP2 / D2.1 ENDEAVOUR Version 1.0

7.3.1 FixTag: Per-Policy Tags

The basic idea of FixTag is to assign a distinct tag to each possible
forwarding path that any policy may ever use. Let τk be the tag representing
the kth possible path. FixTag assumes that, initially, for each internal port
ix that lies on the kth path, a rule rτk(pk) = (pk, ix+1) is installed, which
forwards any packet tagged τk to the path’s successive port ix+1.

FixTag works as follows. Upon receiving a new policy request π and
before installing any rules, a controller pi sends a message to all other
controllers informing them about the policy π it intends to install. Every
controller receiving this message rebroadcasts it (making the broadcast
reliable), and starts installing the policy on pi’s behalf. This ensures that
every policy update that started affecting the traffic eventually completes.

Let i1, . . . , is be the set of ingress ports, and πj be the path specified
by policy π for ingress port ij , j = 1, . . . , s. To install π, FixTag adds
to each ingress port ij a rule that tags all packets matching the policy
domain dom(π) with the tag describing the path πj . However, since
different policies from different controllers may conflict, we require that
every controller updates the ingress ports in a pre-defined order. Thus,
conflicts are discovered already at the lowest-order ingress port,5 and the
conflict-free all-or-nothing installation of a policy is ensured.

The use of reliable broadcast and the fact that the ingress ports are
updated in the same order imply the following:

Theorem 3 FixTag solves the CPC problem in the wait-free manner,
without relying on the oracle and consensus objects.

Observe that FixTag does not require any feedback from the network
on when packets arrive or leave the system. Controllers only coordinate
implicitly on the lowest-order ingress port. Ingress ports tag all traffic
entering the network; internally, packets are only forwarded according to
these tags.

However, while providing a correct network update even under high
control plane concurrency and failures, FixTag has a large tag complexity.
Namely, this depends in a linear fashion on the number of possible policies
and their induced network paths, which may grow to exponential in the
network size. Note that this is unavoidable in a scenario without feedback—a
tag may never be safely reused for a different path as this could always violate
CPC’s consistency requirement.

5Recall that in our model failures do not affect the data plane; therefore, ports do not
fail.

H2020-ICT-2014-1 Project No. 644960 40

WP2 / D2.1 ENDEAVOUR Version 1.0

In practice, rules may be added lazily at the internal ports, and hence
the number of rules will only depend on the number of different and actually
used paths. However, we show that it is possible to exploit knowledge of an
upper bound on the packet latency, and reuse tags more efficiently. Such
knowledge is used by the algorithm described in the next section to reduce
the tag complexity.

7.3.2 ReuseTag: Optimal Tag Complexity

The ReuseTag protocol sketched in Figure 5 allows controllers to reuse up
to f + 2 tags dynamically and in a coordinated fashion, given a minimal
feedback on the packets in the network, namely, an upper bound on the
maximal network latency. As we show in this section, there does not exist
any solution with less than f + 2 tags. Note that in the fault-free scenario
(f = 0), only one bit can be used for storing the policy tag.
State machine. The protocol is built atop a replicated state machine
(implemented, e.g., using the construction of [51]), which imposes a global
order on the policy updates and ensures a coordinated use and reuse of the
protocol tags. For simplicity, we assume that policies are uniquely identified.

The state machine we are going to use in our algorithm, and which we call
PS (for Policy Serialization), exports, to each controller pi, two operations:

• push(pi, π), where π is a policy, that always returns ok;

• • pull(pi) that returns ⊥ (a special value interpreted as “no policy tag
is available yet”) or a tuple (π, tag), where π is a policy and tag ∈
{0, . . . , f + 1}.

Intuitively, pi invokes push(pi, π) to put policy π in the queue of policies
waiting to be installed; and pi invokes pull(pi) to fetch the next policy to
be installed. The invocation of pull returns ⊥ if there is no “available” tag
(to be explained below) or all policies pushed so far are already installed;
otherwise, it returns a tuple (π, tag), informing pi that policy π should be
equipped with tag tag.

The sequential behavior of PS is defined as follows. Let S be a sequential
execution of PS. Let π1, π2, . . . be the sequence of policies proposed in
S as arguments of the push() operations (in the order of appearance).
Let (πi,1, τi,1), (πi,2, τi,2), . . . be the sequence of non-⊥ responses to pull(pi)
operations in S (performed by pi).

If S contains exactly k non-trivial (returning non-⊥ values) pull(pi)
operations, then we say that pi performed k non-trivial pulls in S. If S

H2020-ICT-2014-1 Project No. 644960 41

WP2 / D2.1 ENDEAVOUR Version 1.0

contains pull(pi) that returns (π, t) 6= ⊥, followed by a subsequent pull(pi),
then we say that π is installed in S.

We say that τk is blocked at the end of a finite history S if S contains
pull(pi) that returns (πk+1, τk+1) but does not contain a subsequent pull(pi).
In this case, we also say that pi blocks tag τk at the end of S. Note that a
controller installing policy πk+1 blocks the tag associated with the previous
policy πk (or the initially installed policy in case k = 0). Now we are ready
to define the sequential specification of PS via the following requirements
on S:

Non-triviality: If pi performed k non-trivial pulls, then a subsequent
pull(pi) returns ⊥ if and only if the pull operation is preceded by
at most k pushes or f + 1 or more policies are blocked in S. In other
words, the kth pull of pi must return some policy if at least k policies
were previously pushed and at most f of their tags are blocked.

Agreement: For all k > 0, there exists τk ∈ {0, . . . , f + 1} such that if
controllers pi and pj performed k non-trivial pulls, then πi,k = πj,k =
πk and τi,k = τj,k = τk. Therefore, the kth pull of any controller must
return the kth pushed policy πk equipped with τk.

Tag validity: For all k > 0, τk is the minimal value in {0, . . . , f+1}−{τk−1}
that is not blocked in {0, . . . , n − 1} when the first pull(pi) operation
that returns (πk, τk) is performed. Here τ0 denotes the tag of the
initially installed policy. The intuition here is that the tag for the
kth policy is chosen deterministically based on all the tags that are
currently not blocked and different from the previously installed tag
τk−1. By the Non-triviality property, at most f tags are blocked when
the first controller performs its kth non-trivial pull. Thus, {0, . . . , f +
1} − {τk−1} contains at least one non-blocked tag.

In the following, we assume that a linearizable f -resilient implementation
of PS is available [53]: any concurrent history of the implementation is,
in a precise sense, equivalent to a sequential history that respects the
temporal relations on operations and every operation invoked by a correct
controller returns, assuming that at most f controllers fail. Note that the PS
implementation establishes a total order on policies (π1, tag1), (π2, tag2), . . .,
which we call the composition order (the policy requests that do not compose
with a prefix of this order are ignored).
Algorithm operation. The algorithm is depicted in Figure 5 and operates
as follows. To install policy π̃, controller pi first pushes π̃ to the policy queue
by invoking PS.push(pi, π̃).

H2020-ICT-2014-1 Project No. 644960 42

WP2 / D2.1 ENDEAVOUR Version 1.0

Initially:
seq := ⊥; cur := ⊥

upon apply(π̃)
1 cur := π̃
2 PS.push(pi, π̃)

do forever
3 wait until PS.pull(pi) returns (π, t) 6= ⊥
4 if (seq and π conflict) then
5 res := nack
6 else
7 seq := compose(seq, (π, t))
8 wait until tag(|seq| − 1) is not used
9 install(seq)
10 res := ack
11 if π = cur then output res to the application; cur := ⊥

Figure 5: The ReuseTag algorithm: pseudocode for controller pi.

In parallel, the controller runs the following task (Lines 3-11) to install its
policy and help other controllers. First it keeps invoking PS.pull(pi) until a
(non-⊥) value (πk, τk) is returned (Line 3); here k is the number of non-trivial
pulls performed by pi so far. The controller checks if πk is conflicting with
previously installed policies (Line 4), stored in sequence seq. Otherwise, in
Line 8, pi waits until the traffic in the network only carries tag τk−1 (the tag
τk−2 used by the penultimate policy in seq, denoted tag(|seq| − 1)). Here pi
uses the oracle (described in Section 7.1) that produces the set of currently
active policies.

The controller then tries to install πk on all internal ports first, and
after that on all ingress ports, employing the “two-phase update” strategy
of [105] (Line 9). The update of an internal port j is performed using an
atomic operation that adds the rule associated with πk equipped with τk
to the set of rules currently installed on j. The update on an ingress port
j simply replaces the currently installed rule with a new rule tagging the
traffic with τk, which succeeds if and only if the port currently carries the
policy tag τk−1 (otherwise, the port is left untouched). Once all ingress ports
are updated, old rules are removed, one by one, from the internal ports. If
πk happens to be the policy currently proposed by pi, the result is returned
to the application.

Intuitively, a controller blocking a tag τk may still be involved in

H2020-ICT-2014-1 Project No. 644960 43

WP2 / D2.1 ENDEAVOUR Version 1.0

installing τk+1 and thus we cannot reuse τk for a policy other than πk.
Otherwise, this controller may later update a port with an outdated rule,
since it might not be able to distinguish the old policy with tag τk from a
new one using the same tag. But a slow or faulty controller can block at
most one tag; hence, there eventually must be at least one available tag in
{0, . . . , f+1}−{τk−1} when the first controller performs its k-th non-trivial
pull. In summary, we have the following result.

Theorem 4 ReuseTag solves the CPC Problem f -resiliently with tag
complexity f + 2 using f -resilient consensus objects.

Proof. We study the termination and consistency properties in turn.
Termination: Consider any f -resilient execution E of ReuseTag

and let π1, π2, . . . be the sequence of policy updates as they appear in
the linearization of the state-machine operations in E. Suppose, by
contradiction, that a given process pi never completes its policy update
π. Since our state-machine PS is f -resilient, pi eventually completes its
push(pi, π) operation. Assume π has order k in the total order on push
operations. Thus, pi is blocked in processing some policy π`, 1 ≤ ` ≤ k,
waiting in Lines 3 or 8.

Note that, by the Non-Triviality and Agreement properties of PS, when
a correct process completes installing π`, eventually every other correct
process completes installing π`. Thus, all correct processes are blocked
while processing π. Since there are at most f faulty processes, at most
f tags can be blocked forever. Moreover, since every blocked process has
previously pushed a policy update, the number of processes that try to pull
proposed policy updates cannot exceed the number of previously pushed
policies. Therefore, by the Non-Triviality property of PS, eventually, no
correct process can be blocked forever in Line 3.

Finally, every correct process has previously completed installing policy
π`−1 with tag τ`−1. By the algorithm, every injected packet is tagged with
τ`−1 and, eventually, no packet with a tag other than τ`−1 stays in the
network. Thus, no correct process can be blocked in Line 8—a contradiction,
i.e., the algorithm satisfies the Termination property of CPC.

Consistency: To prove the Consistency property of CPC, let S be a
sequential history that respects the total order of policy updates determined
by the PS. According to our algorithm, the response of each update in
S is ack if and only if it does not conflict with the set of previously
committed updates in S. Now since each policy update in S is installed
by the two-phase update procedure [105] using atomic read-modify-write
update operations, every packet injected to the network, after a policy

H2020-ICT-2014-1 Project No. 644960 44

WP2 / D2.1 ENDEAVOUR Version 1.0

update completes, is processed according to the composition of the update
with all preceding updates. Moreover, an incomplete policy update that
manages to push the policy into PS will eventually be completed by some
correct process (due to the reliable broadcast implementation). Finally, the
per-packet consistency follows from the fact that packets will always respect
the global order, and are marked with an immutable tag at the ingress port;
the corresponding forwarding rules are never changed while packets are
in transit. Thus, the algorithm satisfies the Consistency property of CPC. �

Optimizations and Improvements. A natural optimization of the
ReuseTag algorithm is to allow a controller to broadcast the outcome of
each complete policy update. This way “left behind” controllers can catch
up with the more advanced ones, so that they do not need to re-install
already installed policies.

Note that since in the algorithm, the controllers maintain a total order
on the set of policy updates that respects the order, we can easily extend
it to encompass removals of previously installed policies. To implement
removals, it seems reasonable to assume that a removal request for a policy
π is issued by the controller that has previously installed π.
Tag Complexity: Lower Bound. The tag complexity of ReuseTag
is, in a strict sense, optimal. Indeed, we now show that there exists no
f -resilient CPC algorithm that uses f + 1 or less tags in every network.
By contradiction, for any such algorithm we construct a network consisting
of two ingress ports connected to f consecutive loops. We then present
f + 2 composable policies, π0, . . . , πf+1, that have overlapping domains
but prescribe distinct paths. Assuming that only f + 1 tags are available,
we construct an execution of the assumed algorithm in which an update
installing policy πi invalidates one of the previously installed policies, which
contradicts the Consistency property of CPC.

Theorem 5 For each f ≥ 1, there exists a network such that any f -resilient
CPC algorithm using f -resilient consensus objects has tag complexity at least
f + 2.

Proof. Assume the network Tf of two ingress ports A and B, and f + 1
“loops” depicted in Figure 6 and consider a scenario in which the controllers
apply a sequence of policies defined as follows. Let πi, i = 1, . . . , f+1, denote
a policy that, for each of the two ingress ports, specifies a path that in every
loop ` 6= i takes the upper path and in loop i takes the lower path (the

H2020-ICT-2014-1 Project No. 644960 45

WP2 / D2.1 ENDEAVOUR Version 1.0

... ...

A

B

loop i loop 1

loop f+1

πi

π0

Figure 6: The (f + 1)-loop network topology Tf .

dashed line in Figure 6). The policy π0 specifies the path that always goes
over the upper parts of all the loops (the solid line in Figure 6).

We assume that for all i ∈ {0, . . . , f}, we have pr(πi) < pr(πi+1) and
dom(πi) ⊃ dom(πi+1), i.e., all these policies are composable, and adding
policy πi+1 to the composition π0 ·π1 · · ·πi makes the composed policy more
refined. Note that, assuming that only policies πi, i = 0, . . . , f + 1, are in
use, for each injected packet, the ingress port maintains one rule that tags
and forwards it to the next branching port.

Without loss of generality, let 0 be the tag used for the initially installed
π0. By induction on i = 1, . . . , f+1, we are going to show that any f -resilient
CPC algorithm on Tf has a finite execution Ei at the end of which (1) a
composed policy π0 ·π1 · · ·πi is installed and (2) there is a set of i processes,
q1, . . . , qi, such that each qj , j = 1, . . . , i, is about to access an ingress port
with an update operation that, if the currently installed rule uses j − 1 to
tag the injected packets, replaces it with a rule that uses j instead.

For the base case i = 1, assume that some controller proposes to install
π1. Since the network initially carries traffic tagged 0, the tag used for
the composed policy π0 · π1 must use a tag different from 0, without loss of
generality, we call it 1. There exists an execution in which some controller q1

has updated the tag on one of the ingress port with tag 1 and is just about
to update the other port. Now we “freeze” q1 and let another controller
complete the update of the remaining ingress port. Such an execution
exists, since the protocol is f -resilient (f > 0) and, by the Consistency
and Termination properties of CPC, any update that affected the traffic
must be eventually completed. In the resulting execution E1, q1 is about to
update an ingress port to use tag 1 instead of 0 and the network operates
according to policy π0 · π1.

Now consider 2 ≤ i ≤ f+1 and, inductively, consider the execution Ei−1.
Suppose that some controller in Π − {q1, . . . , qi−1} completes its ongoing

H2020-ICT-2014-1 Project No. 644960 46

WP2 / D2.1 ENDEAVOUR Version 1.0

policy update and now proposes to install πi. Similarly, since the algorithm
is f -resilient (and, thus, (i − 1)-resilient), there is an extension of Ei−1 in
which no controller in {q1, . . . , qi−1} takes a step after Ei−1 and eventually
some controller qi /∈ {q1, . . . , qi−1} updates one of the ingress ports to apply
π0 · · ·πi so that instead of the currently used tag i−1 a new tag τ is used. (By
the Consistency property of CPC, πi should be composed with all policies
π0, . . . , πi−1.)

Naturally, the new tag τ cannot be i − 1. Otherwise, while installing
π0 · · ·πi, either qi updates port i before port i − 1 and some packet tagged
i would have to take lower paths in both loops i and i− 1 (which does not
correspond to any composition of installed policies), or qi updates port i−1
before i and some packet would have to take no lower paths at all (which
corresponds to the policy π0 later overwritten by π0 · · ·πi−1).

Similarly, τ /∈ {0, . . . , i− 2}. Otherwise, once the installation of π0 · · ·πi
by qi is completed, we can wake up controller qτ+1 that would replace the
rule of tag τ with a rule using tag τ + 1, on one of the ingress ports. Thus,
every packet injected at the port would be tagged τ + 1. But this would
violate the Consistency property of CPC, because π0 · · ·πi using tag τ is the
most recently installed policy.

Thus, qi, when installing π0 · · ·πi, must use a tag not in {0, . . . , i − 1},
say i. Now we let qi freeze just before it is about to install tag i on the
second ingress port it updates. Similarly, since π0 · · ·πi affected the traffic
already on the second port, there is an extended execution in which another
controller in Π − {q1, . . . , qi} completes the update and we get the desired
execution Ei. In Ef+1 exactly f + 2 tags are concurrently in use, which
completes the proof. �

7.4 Impossibility for Weaker Port Model

It turns out that it is impossible to update a network consistently in the
presence of even one crash failure, which justifies our assumption that
SDN ports support atomic read-modify-write operations. To prove this
impossibility, we assume here that a port can only be accessed with two
atomic operations: read that returns the set of rules currently installed at
the port and write that updates the state of the port with a new set of rules.

Theorem 6 There is no solution to CPC using consensus objects that
tolerates one or more crash failures.

H2020-ICT-2014-1 Project No. 644960 47

WP2 / D2.1 ENDEAVOUR Version 1.0

Proof. By contradiction, assume that there is a 1-resilient CPC algorithm
A using consensus objects. Consider a network including two ingress ports,
1 and 2, initially configured to forward all the traffic to internal ports (we
denote this policy by π0). Let controllers p1 and p2 accept two policy-update
requests apply1(π1) and apply2(π2), respectively, such that π1 is refined by
π2, i.e., pr(π2) > pr(π1) and dom(π2) ⊂ dom(π1), and paths stipulated by

the two policies to ingress ports 1 and 2 satisfy π
(1)
1 6= π

(1)
2 and π

(2)
1 6= π

(2)
2 .

Now consider an execution of our 1-resilient algorithm in which p1 is
installing π1 and p2 takes no steps. Since the algorithm is 1-resilient, p1

must eventually complete the update even if p2 is just slow and not actually
faulty. Let us stop p1 after it has configured one of the ingress ports, say
1, to use policy π1, and just before it changes the state of ingress port 2 to
use policy π1. Note that, since p1 did not witness a single step of p2, the
configuration it is about to write to port 2 only contains the composition of
π0 and π1.

Now let a given packet in dom(π1) arrive at port 1 and be processed
according to π1. We extend the execution with p2 installing π2 until both
ports 1 and 2 are configured to use the composition π0 · π1 · π2. Such an
execution exists, since the algorithm is 1-resilient and π1 has been already
applied to one packet. Therefore, by sequential composability, the sequential
equivalent of the execution, both apply1(π1) and apply2(π2) must appear as
committed in the equivalent sequential history.

But now we can schedule the enabled step of p1 to overwrite the state
of port 2 with the “outdated” configuration that does not contain π2. From
now on, every packet in dom(π2) injected at port 2 is going to be processed
according to π1—a contradiction to sequential composability. �

7.5 Related Work

Distributed SDN Control Plane. We are not the first to study
distributed designs of the logically centralized SDN control plane. Indeed,
the perception that control in SDN is centralized leads to concerns about
SDN scalability and resiliency, which can be addressed with distributed
control plane designs [118]. Onix [66] is among the earliest distributed SDN
controller platforms. Onix applies existing distributed systems techniques
to build a Network Information Base (NIB), i.e., a data structure that
maintains a copy of the network state, and abstracts the task of network
state distribution from control logic. However, Onix expects developers to

H2020-ICT-2014-1 Project No. 644960 48

WP2 / D2.1 ENDEAVOUR Version 1.0

provide the logic that is necessary to detect and resolve conflicts of network
state due to concurrent control. In contrast, we study concurrent policy
composition mechanisms that can be leveraged by any application in a
general fashion. There are also several studies on the design of spatially
distributed control planes, where different controllers handle frequent and
latency critical events closer to their origin in the dataplane, in order to
improve scalability and latency [49, 50, 108]. ElastiCon [38] proposes an
elastic distributed controller architecture. We in this work, in contrast, do
not consider spatial optimizations but focus on robustness aspects.
Network Updates and Policy Composition. The question of how
to consistently update networks has recently attracted much attention.
Reitblatt et al. [105] formalized the notion of per-packet consistency
and introduced the problem of consistent network update for the case
of a single controller. Mahajan and Wattenhofer [76] considered weaker
transient consistency guarantees, and proposed more efficient network
update algorithms accordingly. Ludwig et al. [75] studied algorithms
for secure network updates where packets are forced to traverse certain
waypoints or middleboxes. Ghorbani et al. [44] recently argued for the
design of network update algorithms that provide even stronger consistency
guarantees. Finally, our work in [20] introduced the notion of software
transactional networking, and sketched a tag-based algorithm to consistently
compose concurrent network updates that features an exponential tag
complexity not robust to any controller failure.
Distributed Computing. There is a long tradition of defining correctness
of a concurrent system via an equivalence to a sequential one [53, 68,
96]. The notion of sequentially composable histories is reminiscent of
linearizability [53], where a history of operations concurrently applied by a
collection of processes is equivalent to a history in which the operations are
in a sequential order, respecting their real-time precedence. In contrast, our
sequentially composable histories impose requirements not only on high-level
invocations and responses, but also on the way the traffic is processed.
We require that the committed policies constitute a conflict-free sequential
history, but, additionally, we expect that each path witnesses only a prefix of
this history, consisting of all requests that were committed before the path
was initiated.

The transactional interface exported by the CPC abstraction is inspired
by the work on speculative concurrency control using software transactional
memory (STM) [112]. Our interface is however intended to model realistic
network management operations, which makes it simpler than recent
dynamic STM models [52]. Also, we assumed that controllers are subject to

H2020-ICT-2014-1 Project No. 644960 49

WP2 / D2.1 ENDEAVOUR Version 1.0

failures, which is usually not assumed by STM implementations.

7.6 Summary

We believe that our work opens a rich area for future research, and
we understand our work as a first step towards a better understanding
of how to design and operate a robust SDN control plane. As a side
result, our model allows us to gain insights into minimal requirements on
the network that enable consistent policy updates: e.g., we prove that
consistent network updates are impossible if SDN ports do not support
atomic read-modify-write operations.

Our FixTag and ReuseTag algorithms highlight the fundamental
trade-offs between the concurrency of installation of policy updates and the
overhead on messages and switch memories. Indeed, while being optimal
in terms of tag complexity, ReuseTag essentially reduces to installing
updates sequentially. Our initial concerns were resilience to failures and
overhead, so our definition of the CPC problem did not require any form of
“concurrent entry” [63]. But it is important to understand to which extent
the concurrency of a CPC algorithm can be improved, and we leave it to
future research. For instance, it may be interesting to combine FixTag and
ReuseTag, in the sense that the fast FixTag algorithm could be used in
sparse areas of the network, while the dynamic tag reuse of ReuseTag is
employed in dense areas.

Another direction for future research regards more complex,
non-commutative policy compositions: while our protocol can also be used
for, e.g., policy removals, it will be interesting to understand how general
such approaches are.

As was recently suggested by Casado et al. [22], maintaining consistency
in network-wide structures and distributed updates, as well as providing
the ability of modular composition and formal verification of network
programs, are becoming principal SDN challenges. Our suggestion to
provide control applications with a transactional interface [20] appears to
be an adequate way to address these challenges: transactions provide the
illusion of atomicity of updates and reads, can be easily composed, and allow
for automated verification.

8 Distributed Network Updates

Software-Defined Networking (SDN) is transforming the way networks are
controlled and run. In contrast to traditional networks, in which forwarding

H2020-ICT-2014-1 Project No. 644960 50

WP2 / D2.1 ENDEAVOUR Version 1.0

devices6 have proprietary control interfaces over distributed protocols,
SDN advocates for standardized interfaces (such as OpenFlow [82]) to
control the network in a centralized fashion. In practice, deployments of
SDN [55, 58, 65] use a distributed software program as a network controller
that manipulates network configuration. This configuration consists of a
collection of forwarding rules distributed across network devices. Forwarding
rules determine how packets are forwarded between devices.

Several recent projects have demonstrated the value of centrally
controlling networks [19, 42, 55, 58, 72, 113]. We observe, like others
before us [62, 73, 105], that regardless of their goal, such systems operate
by frequently updating the network configuration, either periodically or
in reaction to events such as failures or traffic changes. Updating
network configuration is challenging because an update involves performing
operations at multiple devices in multiple steps, each of which must be
planned to minimize disruptions on the applications using the network [21,
62,64,101]. For instance, because of the inherent difficulty in synchronizing
the changes at different ingress switches, the link load during an update
could get significantly higher than that before of after the update, and lead
to packet drops due to congestion [73].

The advent of SDN presents a tremendous opportunity for designing
general solutions laid on foundational principles rather than point solutions,
which has been a recurring pattern in traditional computer networking for
several protocol designs and best practices development. In this work, we
take such a fundamental perspective to networking and propose a general
solution to the problem of consistently updating network configuration while
avoiding several classes of forwarding failures.

Prior work for consistent network updates only considered the scenario
in which the network controller updates the network configuration whereas
switches take just a passive role with respect to solving coordination during
update scheduling and do not take advantage of their immediate proximity
to exchange information. This centralized approach has two important
implications:

First, the controller is involved with the installation of every update and
there are inherently higher latencies than in settings where switches can
communicate directly. As a result, even with the current dynamic scheduling
approaches [62], a network update typically takes in the order of seconds
to be completed with recent results showing 99th percentiles as high as 4
seconds.

6We also refer to devices as switches throughout this work.

H2020-ICT-2014-1 Project No. 644960 51

WP2 / D2.1 ENDEAVOUR Version 1.0

Second, the update scheduling problem is NP-complete in the general
case [62]. As a result, centralized approaches resort to greedy heuristics [62]
or automatic synthesis through incremental model checking [81], which is
computationally expensive at scale.

In contrast with current methods, we investigate the prospect of
designing a distributed network update algorithm that entails an active
participation role for switches. We argue this approach is practical and
supported by several recent works [13, 60, 74] that have demonstrated more
programmable switch designs compared to OpenFlow switches (that are
limited to a match-action paradigm). Recent work also showed how to
introduce greater consistency while updating configuration within a single
switch [57, 83]. Moreover, traditional devices already run sophisticated
routing protocols such as OSPF, IS-IS, etc. and the networking industry
is pursuing newer designs that allow to run open operating systems and
custom applications on network switches [12,41,93].

A distributed network update is a mechanism in which a set of devices
collaborates to schedule an update for the entire network using partial
knowledge. It helps reducing the complexity of scheduling computation as
well as allowing every switch to update its local forwarding rules. However, it
may lead to potential forwarding failures or run into a deadlock if the update
order is inappropriate. In this work, we introduce a reliable decentralized
scheduling algorithm for switches to update forwarding rules locally without
any forwarding failure nor deadlock.

In summary, this work makes the following contributions. We formulate
the distributed network update problem and introduce a formal model
of the problem. Our model has several distinctions from previous ones
(e.g., [21, 62, 105]) and generalizes previous approaches. We describe an
algorithm for decentralized network update scheduling and prove it correctly.
Our algorithm does not run into deadlock scenarios that can affect prior,
centralized approaches.

8.1 Model

8.1.1 Network primitives

We consider a network Γ(S,L), where S = {si},∀1 ≤ i ≤ N denotes the set
of all switches; and L = {`i,j}, 1 ≤ i < j ≤ N is the set of all bidirectional
links, in which `i,j connecting two switches si, sj . Every link `i,j has a
capacity v`i,j .
Packet. In a network, switches forward packets via physical links

H2020-ICT-2014-1 Project No. 644960 52

WP2 / D2.1 ENDEAVOUR Version 1.0

connecting a pair of switches. Every packet pk has a default size szpk .
Flow. A flow Fij is an aggregate of packets between an origin switch si
and a destination switch sj . When clear from context we denote a flow with
F for simplicity. We use the notation pkFij

to denote a packet belonging to
flow Fij (or pkF when omitting the origin and destination switches).

Because each link has a limited capacity, it can only carries a certain
number of packets (depending on their size) in a unit time. Consequently,
every flow has a predefined traffic volume vF indicating the total volume
of traffic the flow will forward in a unit of time. In practice, packet size is
measured by b (bit) and the unit of traffic volume is bps (bit per second).
When we need to specify the traffic volume together with a flow, we use
notation F :vF .
Policy. Packets of a certain flow F are carried over a set of paths PF .
The precise behavior how packets are mapped to paths is determined by
the forwarding policy rF . Note that rF is applied for all paths p ∈ PF .
Our approach does not specify what the actual network policy is, as this
is application-specific and is determined by the SDN controller. Although
we leave the definition of policy abstract, recent work [6] has established
a precise formalism of forwarding policies. In their formalism, which also
applies to our model, a policy is a function that maps from located packets
to set of located packets. Our discussion below only assumes an equivalence
relation between policies.
Path. All paths of a flow Fij have the same original switch si and
destination switch sj . Every path P ∈ PF has a traffic volume vP , such

that
∑
P∈PF

vP = vF . Notation P :vP is used to denote path p with traffic

volume vP .
A path p is represented by sequence P (SP , LP); where SP =

[s1P , s2P , . . . , skP] ⊂ S (iP is the order in which switches are traversed in
path P of length k); and LP = {`iP ,(i+1)P |1 ≤ i < k} ⊂ L is the set
of traversed links. While SP and LP can be straightforwardly calculated
from each other, we use both notations to simplify our formalism. For
simplicity, we also refer to a path from s1P to skP by a natural sequence
of its vertices P = s1P s2P . . . skP . This way, given path P = s1P s2P . . . skP ,
∀1 ≤ iP ≤ jP ≤ kP , we denote a path segment P as:

PsiP = [s1P . . . siP] a segment of P from the first switch to siP

siPP = [siP . . . skP] a segment of P from siP to the last switch skP

siPPsjP = [siP . . . sjP] a segment of P between siP , sjP

H2020-ICT-2014-1 Project No. 644960 53

WP2 / D2.1 ENDEAVOUR Version 1.0

A flow F is also represented as a set of directional weighted graph
F (SF , LF), where SF =

⋃
P∈PF

SP and LF =
⋃

P∈PF
LP .

In this work, notation ⊥ is used to represent the nonexistence of (1) a
flow , (2) a path, or (3) a set of policies.
Comparisons. We introduce the following comparison relations between
paths (P1, P2) and flows (F1,F2):

• P1 ∼ P2 ⇒ (initP1 = initP2) ∧ (endP1 = endP2).

• P1 ≡ P2 if P1 and P2 have the same sequence SP1 ≡ SP2 (i.e. LP1 ≡
LP2).

• F1 ∼ F2 ⇒ (initF1 = initF2) ∧ (endF1 = endF2).

• F1 ≡ F2 ⇒ (PF1 ≡ PF2) ∧ (rF1 ≡ rF2) ∧ (tF1 = tF2)

The ≡ relation of path (respectively flow) implies the ∼ relation of path
(resp. flow).

8.1.2 Packet forwarding.

At the origin switch si, a flow of packets with traffic volume limited by vFij ,
is sent to the destination switch sj by splitting and forwarding according to
the set of paths PFij . Whenever receiving a packet pk from the predecessor,
every intermediate switch forwards the packet to the successor by forwarding
function ωsi,t(). Based on (i) the information carried in the packet, and (ii)
the associated information stored in the switch applied to the packet, ω
returns one of two possible values – Step or Drop – indicating that the
packet is forwarded to the successor or dropped, respectively. These two
kinds of information (within the packet and switch state) are abstracted
with (i) a tag representing the information carried in packet and (ii) a
forwarding function running on the switch.
Tag. Every packet pk has a tag (denoted by tagpk for a specific packet
or simply tag in the general case) contains information that identifies the
flow of pk . Further, it contains necessary information to allow the forwarding
function running on a switch to make decisions on how to forward the packet.
Every flow F has a set of possible tags called TF that can be assigned to a
packet. We later describe how tags are used to map packets into network
configurations.
Forwarding function. To forward the packet, a switch must necessarily
know what policy applies to the packet and the next hop switch. There

H2020-ICT-2014-1 Project No. 644960 54

WP2 / D2.1 ENDEAVOUR Version 1.0

are multiple ways to convey this information; in this work, we model the
forwarding function by two primitives as follows:

• nextsi,t(tag) which is called at time t in switch si to return the next
hop switch of si for packet pk according to the tag attached in the
packet. If there is no information about the next hop of pk , it returns
⊥
• get policysi,t(tag) which is called at time t in switch si. It returns the

policy associated with the tag of pkF . If there is no policy associated
with the tag, it returns ⊥.

The forwarding function is defined based on the two primitives above:

ωsi,t(tagpkF
) ={

Drop⇔ (nextsi,t(tagpkF
) ≡ ⊥ ∨ get policysi,t(tagpkF

) ≡ ⊥)

Step ⇔ (nextsi,t(tagpkF
) 6≡ ⊥ ∧ get policysi,t(tagpkF

) 6≡ ⊥)

Trace. When a packet pk is forwarded according to the flow, tracet(pk)
is a ordered sequence of all switches that pk traversed until time t. A
trace tracet(pk) = si . . . sk means that pk was forwarded from switch si
and arrived at sk by time t. The notation τk,pkFij

denotes the time at

which packet pkFij
arrived at switch sk. When the loop-freedom property

(introduced later) does not hold, there could be multiple appearances of a
switch sk in a trace. The trace information is only used to analyze and
define the problem. Neither a packet nor a switch practically store this
information.
Successful forwarding. Packet pk is successfully forwarded from switch
si to sj if there exists finite time tj such that tracetj (pk) = si . . . sj .
Forwarding failure. A packet forwarding could fail due to one of following
reasons: (i) the packet is dropped because of a disrupted path7, (ii) the
packet follows a path that contains a cycle and the packet loops in the
network, (iii) the packet is dropped because it reaches a congested link.

Given a packet pk , these failures are formally defined as follows:

• Black-hole failure: Packet pk is dropped in the network.

∃sk ∈ S, ωsk,τk,pk (tagpk) = Drop

7Meaning that a packet is dropped at a certain switch when the next hop is ⊥ although
this is not the intended behavior.

H2020-ICT-2014-1 Project No. 644960 55

WP2 / D2.1 ENDEAVOUR Version 1.0

• Loop failure: There exists a switch sk such that function
nextsk,τk,pk (tagpk) returns, for packet pk , a next hop switch that has
already appeared in traceτk,pk (pk)

∃sk, nextsk,τk,pk (tagpk) ∈ traceτk,pk (pk)

• Congestion failure: pk is forwarded from current switch si to the
next hop switch sj while its current traffic volume of `i,j is greater
than its capacity.

∃T, ∃s1, s2 ∈ S,
T+∆∫
t=T

∑
pk ′|nexts1,t(tagpk′)=s2

szpk ′ > v`1,2

Note that these three types of failures have a different impact on the
quality-of-service (QoS) of the network. The black-hole and loop failures
only affect packets that are part of the flows affected by the failure. Instead,
the congestion failure affects packet forwarding for potentially every flow
that shares the same congested links.

8.1.3 Network configuration.

A network configuration C is the set of all flows in a network. In this work,
we assume the unity property of flow in a configuration:
Unity. For any two switches si and sj , in every network configuration,
there is no more than one flow F forwarding packets from si to sj .

∀F1,F2 ∈ C,F1 � F2

Validity. A network configuration is valid if it does not contain the
potential factors leading to the failure of forwarding. Consider an arbitrary
configuration, where every packet is forwarded with a tag that is assigned
by the starting switch of a flow. The time to forward a packet is shorter
than the time for network to change from one configuration to another [62].

So, given a network configuration C, let TC be the set of all possible tags
in a network configuration that can be assigned to a packet (TC =

⋃
F∈C

TF),

C is valid if for any packet forwarded with a tag ∈ T, there is no failure in
forwarding. Formally, the validity of C is defined as follows:

H2020-ICT-2014-1 Project No. 644960 56

WP2 / D2.1 ENDEAVOUR Version 1.0

• Black-hole freedom: no packet is dropped in the network.

∀Fij ∈ C, ∀tag ∈ TFij ,

∃P = [si . . . sj]|∀sk ∈ P, ωsk,t(tag) = Step

• Loop freedom: no packet should loop in the network.

∀Fij ∈ C, ∀tag ∈ TFij ,

∃P = [si . . . sj]|∀sk, sh ∈ P, sk 6= sh

• Congestion freedom: no link has to carry a traffic greater than the
capacity of the link.

∀t1, ∀si, sj ∈ S,
t1+δt∫
t=t1

∑
pk |nextsi,t(tagpk)=sj

szpk ≤ v`i,j

8.2 Problem

8.2.1 Network update

Given two network configurations C,C′, a network update causes the
transformation ΩC : C 7→ C′ from the current network configuration C to
a target configuration C′, as show in Figure 7. In more detail, the old
set of flows in C will be replaced by the new set of flows in C′ such that
the replacement does not cause any failures. During this transformation,
the network configuration evolves through a sequence of intermediate states
until it reaches the target configuration C′. So, a network update is an
evolution C of network configuration starting from time t0, with Ct0 ≡ C,
till Ct ≡ C′, where Ct denotes the configuration at time t. A network update
has three desired properties as follows:

• Termination: After a finite time, network configuration is C′.
Formally, ∃t′, Ct′ ≡ C′.
• Validity: All intermediate configurations are valid. Formally, ∀t ≥
t0, Ct is valid.

• Per-packet coherence: no packet is forwarded in the mix of the
old and new forwarding policy (recall si is the origin switch of the

H2020-ICT-2014-1 Project No. 644960 57

WP2 / D2.1 ENDEAVOUR Version 1.0

flow). Formally:

∀pkFij
,∀sk ∈ tracetk(pkFij

),

get policysk,τk,pkFij
(tagpkFij

) ≡ get policysi,τi,pkFij
(tagpkFij

)

A näıve solution to network update is to force the origin switch of
every flow to stop forwarding new packets until the update finishes. This
approach is not practical as it clearly disrupts network performance during
the update. Due to capacity limit of physical links, and because of the
inherent difficulty in synchronizing the changes at different ingress switches,
the link load during an update could get significantly higher than that before
of after the update. Therefore, to minimize disruptions to the applications,
it is necessary to decompose a network update into a set of small update
operations. In this work, π denotes an update operation.
Scheduling Given the set of update operations, a network update schedule
is the execution order of all given operations such that the Validity of
network update is not violated by any execution and the total network traffic
demand is satisfied.

We next review related work and later discuss in more detail about the
decomposition of network update into the set of update operations. We
will focus on two principal aspects: (i) what is an update operation? And
(ii) what entity in the network should perform an update operation?

8.2.2 Related work

The network update scheduling problem has recently been widely
studied [21,62,64,73,81,83,101,105]. These works use centralized approaches
based on the SDN control plane to preserve the logical constraints of network
update. The work in [62] shows that this problem is NP-complete in the
presence of both link capacity and switch memory constraints; and finding
the fastest scheduling is NP-complete with the constraint of link capacity.
The definition of network update operation varies in different approaches.
However, these approaches consider the case where every flow only has
one path and, as we illustrate later, can run into deadlock scenarios. In
contrast, we study the network update problem in decentralized settings
and generalize it with flows over multiple paths.

In [62], a scheduling algorithm, called Dionysus, computes a schedule
for every path transformation (i.e., update operation). The entity that
executes an update operation is a centralized controller that controls all
switches in the network. Therefore, the whole path is transformed at the

H2020-ICT-2014-1 Project No. 644960 58

WP2 / D2.1 ENDEAVOUR Version 1.0

same time. Dionysus computes a dependency graph that represents the
dependencies of update operations on the link capacity resource availability
in the whole network. This dependence graph is used by the SDN control
plane to perform update operations with a flexible scheduling based on the
actual finishing time of update operations across switches.

8.2.3 Network update scheduling

Dependency graph. Given a pair of current and target network
configuration C,C′, any movement πP from a path P to a the new path
P ′ depends on the availability of related resources in the new path P ′, while
release the corresponding availability to link capacity resource in the old
path P . These dependencies are represented with a dependency graph —
a bipartite graph G(Π, L,Efree, Ereq), where the two of subset of vertices
represent the path transformation set Π and link set L. The value associated
to a link vertex `i,j ∈ L represents the current available capacity of `i,j . The
two subset of edges of G, which are Ereq and Efree, indicate the following:

• Efree is the set of directed edges from Π to L. A weighted edge efree
from transformation πp ∈ Π to a link `i,j ∈ L represents the available
capacity that is given to `i,j by πp.

• Ereq is the set of directed edges from L to Π. A weighted edge ereq
from link `i,j ∈ L to a transformation πp ∈ Π represents the available
capacity of `i,j that is necessary to enable πp.

s5

s1

s6

s2

s7

s3

s8

s4

P1

P2

P3

P4

(a) Current configuration (C)

s5

s1

s6

s2

s7

s3

s8

s4

P ′1

P ′2

P ′3

P ′4

(b) Target configuration (C′)

Figure 7: An example of network update

Figure 8(a) shows the dependency graph for the example network update of
Figure 7.
Deadlock. Dionysus [62] creates a dependency graph for the entire network
in a central controller. The controller also play a central role in coordinating
and deciding what update operation is performed at a particular switch.

H2020-ICT-2014-1 Project No. 644960 59

WP2 / D2.1 ENDEAVOUR Version 1.0

`1,2:0

`1,6:0

`4,8:0

`6,7:0

π1

π2

π3

π4

5

5

5

5

5

5

5

5

5

5

5

5

(a) Deadlock for the update of
Figure 7

`1,2:0

`1,6:0

π1

π2

π3

π4

5

5

5

5
5

5

5

(b) Dependency graph
for s1

`6,7:0

π3

π4

5
5

(c) Dependency graph
for s6

`4,8:0

π1

π2

π3

5

5

5

(d) Dependency graph
for s4, s7, s8

Figure 8: Decomposing a network update into three dependency graphs.

However, this approach easily leads to a deadlock situation as illustrated
in the example in Figure 7. In this example, the network configuration is
updated from C (Figure 7(a)) to C′ (Figure 7(b)). We assume that every
link has 10 unit of capacity and the each path takes 5 unit. So, every link can
carry at most 2 paths at the same time. Let πi be the movement from path
pi in C to path P ′i in C′. As we do not want to violate the congestion freedom
property, there is a deadlock that prevents paths to be entirely updated in
the whole network. In particular, π1 cannot be done due to congestion in
link `4,8. The same problem occurs with π2 and link `1,6, π3 and link `1,2, π4

and link `6,7. As shown in Figure 8(a), all movement vertices πi, (1 ≤ i ≤ 4)
depend on the available amount from at least one link capacity node, all of
which have current capacity equal to 0. Therefore, there is no schedule that
allows to update the network from C to C′.

H2020-ICT-2014-1 Project No. 644960 60

WP2 / D2.1 ENDEAVOUR Version 1.0

8.2.4 Segmentation

Consider the transformation π1 in our running example. The two segments
s2P1s6 (resp. s7P1s8) can be transformed separately to s2P

′
1s6 (resp.

s7P1s8). The same situation applies for π2 with two segments s1P2s3, s3P2s8;
π4 with two segments s1P4s6 and s6P4s7. The deadlocked dependency graph
in Figure 8(a) can be decomposed into the three dependency graphs in Figure
8(b),8(c),8(d).

This example shows that updating different segments of a path separately
avoids the complex scheduling scenario with the complete update, and
reduces the potential case of deadlock. In general, instead of updating the
whole path, we consider to update disjoint segments having the same starting
and ending switches.

The natural questions arises: what is the necessary information for a
switch to independently perform such a transformation?

8.2.5 Update operation

An update operation is the smallest unit that should be scheduled by a
scheduling algorithm.
Flow transformation. A flow transformation is represented as a pair
φF (old, new), where φF .old, φF .new are the values of flow F before and
after the transformation respectively.

A flow transformation could be one of three types: Updating (up),
Removing (rm), and Adding (add). Let Φup,Φrm,Φadd be the set of all
Updating, Removing, Adding flow transformations respectively. The
three types of flow transformations are formally defined as follows.

(1) Updating: A flow F is transformed by φF such that φF .old ∼
φF .new.

(2) Adding: A new flow F is added into the new configuration

∀φ ∈ Φadd, φF .new 6≡ φF .old ≡ ⊥

(3) Removing: A old flow F is removed from the original configuration

∀φ ∈ Φrm, φF .old 6≡ φF .new ≡ ⊥

Let Φ = Φup∪Φrm∪Φadd be the set of all flow transformations. Because
of the Unity property of a flow in a configuration, every flow is transformed
by a unique flow transformation.

H2020-ICT-2014-1 Project No. 644960 61

WP2 / D2.1 ENDEAVOUR Version 1.0

φ1 = φ2 ⇔{
φ1.old ∼ φ2.old 6≡ ⊥
∨((φ1.old ≡ φ2.old ≡ ⊥) ∧ (φ1.new ∼ φ2.new))

In more detail, every flow transformation φF ∈ Φmv consists of: (1) the
policy update UF from the set of policies rF of the original configuration C to
the set of policies rF ′ in the target configuration C′; (2) the paths movement
ΩPF : PF 7→ PF ′ from set of path PF of C to a new set of path PF ′ of C′.
Path movement. For every Updating flow transformation φ, the
traffic volume of the flow after being transformed φ.new and before being
transformed φ.old could be different. Hence, the number and the traffic
volume of paths could also be changed. To avoid impacting network
performance, any traffic volume of any removed path in the original
configuration need to be replaced by the equivalent traffic volume in the
target configuration.

s5

s1

s6

s2

s7

s3

s8

s4

P1:10

P2:2

P3:8

(a) Flow F1−8 in current configuration (C)

s5

s1

s6

s2

s7

s3

s8

s4

P ′1:5

P ′2:5

P ′3:5

P ′4:5

P ′5:5

(b) Flow F1−8 in target configuration (C′)

Figure 9: Path movement.

For example, in Figure 9, traffic volumes of paths P1, P2, P3 in
configuration C are 10, 2, 8, respectively; while in target configuration
C′, there are five paths, each of which has the same traffic volume 5.
Consequently, paths in the original configuration cannot be directly replace

H2020-ICT-2014-1 Project No. 644960 62

WP2 / D2.1 ENDEAVOUR Version 1.0

by another path in the target configuration without degrading network
performance.
Split movement. To replace the old traffic volume by an equivalent
traffic volume, paths must be split into smaller units, called split, such
that every unit in the original configuration has a corresponding unit with
equal traffic volume in the target configuration. This problem can be solved
using a simple allocation algorithm. Consequently, a network update can be
considered as a set of split movements and policies update.

Update operation Applying the idea of updating by segmentation from
section 8.2.4 to the split, in this work, we consider an update operation is a
movement of a split segment (i.e. the object of scheduling algorithm) with
the constraint on the policies such that for every packet pk .

• Every switch in the whole split must forward the packet with the same
policy;

• But, split can be mixed between split segment from the old
configuration and the new configuration.

Every update operation is represented as a pair.

π(old, new)|(π.old ∼ π.new) ∨ ¬(π.old = ⊥ ∧ π.new = ⊥)

Where π.old (resp. π.new) is split segment before (resp. after) the
movement.

Besides, ∀π(old, new) ∈ Π = Πmv ∪ Πrm ∪ Πadd, where Πmv,Πrm,Πadd

are set of all Moving (mv), Removing (rm), and Adding (add) update
operations, respectively.

(1) Moving: Split segment is replaced by a corresponding split segment
with an equivalent traffic volume: ∀π ∈ Πmv, π.old ∼ π.new ∧ vπ.old =
vπ.old

(2) Removing: ∀π ∈ Πrm, π.old 6≡ π.new ≡ ⊥

(3) Adding: ∀π ∈ Πadd, π.new 6≡ π.old ≡ ⊥

8.3 Distributed Scheduling

In this section, we firstly introduce an implementation of the two
abstractions: Tag(tag) and Forwarding function (ω), introduced in previous
section 8.1.

H2020-ICT-2014-1 Project No. 644960 63

WP2 / D2.1 ENDEAVOUR Version 1.0

Tag Every tag is a tuple 〈oldp, newp, isNew〉, where oldp and newp are the
identities of paths that apply to the packet (in a mutually exclusive fashion),
and isNew indicates the packet is forwarded with old or new set of policies.

Function next(tag):
if (tag.oldp < 0 ∧ tag.newp < 0) then

return ⊥;
else if (tag.newp < 0) then

return get path(tag.oldp);
else

curp =get path(tag.oldp);
if (curp = ⊥) then

curp = get path(tag.newp);
return curp;

Function get policies(tag):
return policies [policiesid];

Algorithm 1: Forwarding function running in si

Forwarding function Together with the tag, we also define the way
in which paths and rules are stored in the switches; as well as the two
primitives, nextsi,t() and get policysi,t(), of forwarding function.

Every switch si has a list of paths passing through it and a list of sets
of policies corresponding to the paths. The paths and the sets of policies
could come from either the old configuration and the new configuration. We
assume that every path (resp. every set of policies) has a unique identity.

8.3.1 Creating dependency graph

Algorithm 2 computes the dependency graph for update operations related
to a switch. This algorithm is executed by any switch that is the final switch
of intersection split segment (i.e. the starting switch of the disjoint segment)
between the old and the new network configuration. Given a switch si, the
input parameters consist of:

• the set of update operations related to si by either old split or new split
(called Πi).

• the set of links Li (together with their capacity) that consists of all
links appearing in either old split segments or new split segments of
the set of update operations Π.

H2020-ICT-2014-1 Project No. 644960 64

WP2 / D2.1 ENDEAVOUR Version 1.0

Oseg/Orstart

Oseg/Nr

Nseg/Nr

Nseg/Or

C
apable,

G
oodT

oM
ove

C
oh
er
en
t

C
apable,

G
oodT

oM
ove

C
oh
er
en
t

(a) Origin switch of both new/old split segment

start Nseg/Or Nseg/Nr
Capable,

GoodToMove

Coherent

Coherent

(b) Intermediate switch of new segment

Oseg/Orstart Oseg/Nr
Coherent Removing

(c) Intermediate switch of old segment

Figure 10: State diagrams

H2020-ICT-2014-1 Project No. 644960 65

WP2 / D2.1 ENDEAVOUR Version 1.0

Function Scheduling(Πi, Li):
G(Πi, Li, E

i
free, E

i
req)← CreateGraph(Πi, Li);

G(Πi, Li, E
i
free, E

i
req)← SimplifyGraph(G(Πi, Li, E

i
free, E

i
req));

// SimplifyGraph is in the Appendix

return G(Π, Li, E
i
free, E

i
req);

Function CreateGraph(Πi, Li):
Eifree = Eireq = ∅;
foreach π ∈ Π do

if π.old 6≡ π.new then
Π = Π ∪ {π};
foreach ` ∈ π.old do

if ` /∈ π.new then
efree = {π → ` : vπ.old};
Eifree = Eifree ∪ {efree};

foreach ` ∈ π.new do
if ` /∈ π.old then

ereq = {`→ π : vπ.new};
Eireq = Eireq ∪ {ereq};

return G(Πi, Li, E
i
free, E

i
req);

Algorithm 2: Creating dependency graph for Πi

8.3.2 Scheduling an update operation

The scheduler for an update operation π works as a state machine with four
states corresponding to the all composition cases of the split segment and
the rule in which a switch is able to forward the packet: (1) Oseg/Or: with
old configuration. (2) Oseg/Nr: with old split segment and new policies.
(3) Nseg/Or: with new split segment and old policies. (4) Nseg/Nr: with
new configuration.. The schedulers are different according to the logical
position of switch in a split/path. The accepting state is when a switch can
forward packet following to new split segment with the new set of policies.

State transition While Capable is not a message, it is a state of a link
capacity, in dependency graph, for a corresponding link of split segment, the
others are a notifying messages sent by switch.

• GoodToMove message: sent by a switch s2 in split segment π.new
with π.new’s identity. It notifies that π.new has no blackhole and
the movement does not create the deadlock.

• Coherent message: sent by a switch s2 in either old or new path
with the path’s identity. It states that all successors of s2 in the
whole path have the new set of policies installed.

H2020-ICT-2014-1 Project No. 644960 66

WP2 / D2.1 ENDEAVOUR Version 1.0

• Removing message: sent by the origin switch of both the new and
old split segments to the successors in the old segment. This message
states that the old split segment can be removed.

An update operation is only performed at switch s1, when
all link capacity nodes of corresponding incoming edges of s1 in
G(Π1, L1, E

1
free, E

1
req) and s1 receive GoodToMove message. Therefore,

in every switch s1 running scheduling algorithm, we assume the simple
functions returning if s1 received a particular type of message given by a
update operation identity.

After executed the update operation π, switch s1 sends Removing
message to the successor switch in the old split segment π.old. Upon
receiving Removing message, from predecessor, switch s2 adds the
additional capacity to corresponding link node of outgoing edges in
dependency graph.

Event Receiving Updating message msg contains Πi, policies
′
i:

StoreNewState(Πi, policies
′
i);

G(Πi, Li, E
i
free, E

i
req)← Scheduling(Π);

Event Receiving Removing message msg:
Remove path πmsg.old;
foreach ` ∈ πmsg.old do

if ` ∈ Li then
v` = v` + vπmsg.old;

send Removing message to the successor switches in πmsg.old;

ExecuteScheduling(G(Πi, Li, E
i
free, E

i
req));

Event Receiving GoodToMove message msg:
// update operation id contained in msg exists in Πi

if (∃πmsg ∈ Πi) then
if si = πmsg.segInit then

ExecuteScheduling(G(Πmsg, Li, E
i
free, E

i
req));

else if NoDeadlock(πmsg) then
send GoodToMove message to predecessor switches of πmsg.new;

Event Receiving Coherent message msg:
if (∃πmsg ∈ Πi) then

send Coherent message to predecessor switches of πmsg;

Algorithm 3: Event handler (running in every switch si)

Lemma 7 (Congestion freedom) The scheduling algorithm preserves
the congestion freedom.

(Sketch). Congestion freedom is guaranteed by the dependency graph
and IsExecutable function. IsExecutable ensures that there are only two

H2020-ICT-2014-1 Project No. 644960 67

WP2 / D2.1 ENDEAVOUR Version 1.0

Function ExecuteScheduling(G(Πi, Li, E
i
free, E

i
req)):

if @G(Πi, Li, E
i
free, E

i
req) then

return;
foreach unexecuted operation πi ∈ G do

if IsExecutable(πi) then
execute πi;
send Removing message to successor switch the old path πi.old;

Function IsExecutable(πi):
return (((@{`→ πi} ∈ Eireq) ∨ (∀{`→ πi} ∈ Eireq, v` > {`→ πi:v}))
∧(NoDeadlock(πi)= True)
∧(ReceivedGoodToMoveMsg(πi)= True);
∧(IsNoLoop(πi)= True);

Function StoreNewState(Πi, policies
′
i):

Store(Πi, policies
′
i);

foreach π ∈ Πi do
if (si = π.new.segEnd)
∨(ReceivedGoodToMoveMsg(π)= True) then

send GoodToMove message to predecessor of π.new;
if (si = π.old.end)
∨(ReceivedCoherentMsg(π)= True) then

send Coherent message to predecessor of π.old and π.new;

Algorithm 4: Distributed network update (running in every switch
si)

cases in which an update operation is executed: (1) when update operation
does not requires any link capacity, (2) when the available capacity of
incoming edge greater than the require capacity of the update operation.
By this way, no link has to carry a traffic greater than its capacity. �

Lemma 8 (Per-packet coherence) The scheduling algorithm preserves
the per-packet coherence property.

Proof. A Coherent message is only sent in two cases:

1. In line 19 of Algorithm 4, when an ending switch of the whole path
successfully updates the policies of the new configuration.

2. In line 20 of Algorithm 3, a switch receive the Coherent from the
successor that already updated the policies of the new configuration.

Recursively, every intermediate switch, in a path, receiving Coherent and
sending it to predecessor has successfully updated the new policies.

H2020-ICT-2014-1 Project No. 644960 68

WP2 / D2.1 ENDEAVOUR Version 1.0

Consequently, the starting switch of a path only receives Coherent
when all successor switches in the new path segment (logical group of all
split segments of the same path) have updated new network configuration. �

Lemma 9 (Blackhole freedom) The blackhole freedom property holds
with the scheduling algorithm.

Proof. A GoodToMove message is only sent in two cases:

1. In line 16 of Algorithm 4, when an ending switch of a split segment
π.new successfully updates the corresponding path and policies of the
new configuration.

2. In line 16 of Algorithm 3, a switch receive the GoodToMove from
the successor that already updated the corresponding path and policies
of the new configuration.

Recursively, every intermediate switch, in a split segment, receiving
GoodToMove and sending it to predecessor has successfully updated the
new network configuration.

Consequently, the starting switch of a split segment only receives
GoodToMove when all successor switches in the new split segment have
updated new network configuration. �

9 Accelerating Consensus via Co-Design

Software-defined networking (SDN) is transforming the way networks
are configured and run. In contrast to traditional networks, in which
forwarding devices have proprietary control interfaces, SDNs generalize
network devices using a set of protocols defined by open standards,
including most prominently the OpenFlow [82] protocol. This move towards
standardization has led to increased “network programmability”, allowing
ordinary programs to manage the network through direct access to network
devices.

Several recent projects have used SDN platforms to demonstrate that
applications can benefit from improved network support. While these
projects are important first steps, they have largely focused on one class of
applications (i.e., Hadoop data processing [42,48,78,113]), and on improving

H2020-ICT-2014-1 Project No. 644960 69

WP2 / D2.1 ENDEAVOUR Version 1.0

performance via data-plane configuration (e.g., route selection [48, 113],
traffic prioritization [42,113], or traffic aggregation [78]). None of this work
has fundamentally considered whether application logic could be moved into
the network. In other words: how can distributed applications and protocols
utilize network programmability to improve performance?

This work focuses specifically on the Paxos consensus protocol [69].
Paxos is an attractive use-case for several reasons. First, it is one of the
most widely deployed protocols in highly-available, distributed systems, and
is a fundamental building block to a number of distributed applications [18,
29, 46]. Second, there exists extensive prior research on optimizing
Paxos [70, 80, 98, 99], which suggests that the protocol could benefit from
increased network support. Third, moving consensus logic into network
devices would require extending the OpenFlow API with functionality that
is amenable to an efficient hardware implementation [11,14].

Implementing Paxos in the network provides a different point in the
design space, and identifies a different set of network requirements for
protocol implementors. This work presents two different approaches: (i)
a detailed description of a sufficient set of OpenFlow extensions needed to
implement the full Paxos logic in SDN switches; and (ii) an alternative,
optimistic protocol which can be implemented without changes to the
OpenFlow API, but relies on assumptions about how the network orders
messages.

Although neither of these protocols can be fully implemented without
changes to the underlying switch firmware, we present evidence to show that
such changes are feasible. Moreover, we present an evaluation that suggests
that moving consensus logic into the network would reduce application
complexity, reduce application message latency, and increase transaction
throughput.

In summary, this work makes the following contributions:

• It identifies a sufficient set of features that protocol implementors
would need to provide to implement consensus logic in network devices.

• It describes an alternative protocol, inspired by Fast Paxos [70], which
can be implemented without changes to the OpenFlow API, but relies
on assumptions about how the network orders messages.

• It presents experiments that suggest the potential performance
improvements that would be gained by moving consensus logic into
the network.

H2020-ICT-2014-1 Project No. 644960 70

WP2 / D2.1 ENDEAVOUR Version 1.0

In the following, we first provide a short summary of the Paxos protocol
(§9.1), followed by a description of the two approaches to providing network
support for Paxos (§9.2). Then, we present the results from our experimental
evaluation (§9.3) and discuss related work (§9.4) before giving a summary
of this work (§9.5).

9.1 Paxos Background

State-machine replication [67, 109] is a fundamental approach to designing
fault-tolerant systems used by many distributed applications and services
(e.g., Google’s Chubby [18], Scatter [46], Spanner [29]). The key idea is to
replicate services, so that a failure at any one replica does not prevent the
remaining operational replicas from servicing client requests. State-machine
replication is implemented using a consensus protocol, which dictates how
the participants propagate and execute commands.

Paxos [69] is perhaps the most widely used consensus protocol. Paxos
participants, which communicate by exchanging messages, may play any of
three roles: proposers issue requests to the distributed system (i.e., propose
a value); acceptors choose a single value; and learners provide replication
by learning what value has been chosen. Note that a process may play one
or more roles simultaneously. For example, a client in a distributed system
may be both a proposer and a learner.

A Paxos instance is one execution of consensus. An instance begins
when a proposer issues a request, and ends when learners know what value
has been chosen by the acceptor. The protocol proceeds in a sequence of
rounds. Each round has two phases. For each round, one process, typically
a proposer or acceptor, acts as the coordinator of the round.
Phase 1. The coordinator selects a unique round number c-rnd and asks
the acceptors to promise that in the given instance they will reject any
requests (Phase 1 or 2) with round number less than c-rnd. Phase 1 is
completed when a majority-quorum Qa of acceptors confirms the promise
to the coordinator. Notice that since Phase 1 is independent of the value
proposed it can be pre-executed by the coordinator [69]. If any acceptor
already accepted a value for the current instance, it will return this value to
the coordinator, together with the round number received when the value
was accepted (v-rnd).
Phase 2. The coordinator selects a value according to the following
rule: if no acceptor in Qa accepted a value, the coordinator can select
any value. If however any of the acceptors returned a value in Phase 1,
the coordinator is forced to execute Phase 2 with the value that has the

H2020-ICT-2014-1 Project No. 644960 71

WP2 / D2.1 ENDEAVOUR Version 1.0

highest round number v-rnd associated to it. In Phase 2, the coordinator
sends a message containing a round number (the same used in Phase 1).
Upon receiving such a request, the acceptors acknowledge it, unless they
have already acknowledged another message (Phase 1 or 2) with a higher
round number. Acceptors update their c-rnd and v-rnd variables with the
round number in the message. When a quorum of acceptors accepts the
same round number (Phase 2 acknowledgment), consensus terminates: the
value is permanently bound to the instance, and nothing will change this
decision. Thus, learners can deliver the value. Learners learn this decision
either by monitoring the acceptors or by receiving a decision message from
the coordinator.

As long as a nonfaulty coordinator is eventually selected and there
is a majority quorum of nonfaulty acceptors and at least one nonfaulty
proposer, every consensus instance will eventually decide on a value. A failed
coordinator is detected by the other nodes, which select a new coordinator.
If the coordinator does not receive a response to its Phase 1 message it can
re-send it, possibly with a bigger round number. The same is true for Phase
2, although if the coordinator wants to execute Phase 2 with a higher round
number, it has to complete Phase 1 with that round number.

The above describes one instance of Paxos. Throughout this work,
references to Paxos implicitly refer to multiple instances chained together
(i.e., Multi-Paxos [25]).

Fast Paxos [70] is a well known optimization of Paxos. It extends
the classic rounds, as described above, with fast rounds. In a fast round
proposers contact acceptors directly, bypassing the coordinator. Fast rounds
save one communication step but are only effective in the absence of
collisions, a situation in which acceptors accept different values in the round,
and as a result no value is chosen. Fast Paxos can recover from collisions
using classic rounds. In order to ensure that no two values are decided, fast
rounds require larger quorums than classic rounds.

9.2 Consensus in the Network

In this section, we identify two approaches to improving the performance
of Paxos by using software-defined networking. Section 9.2.1 identifies a
sufficient set of features that a switch would need to support to implement
Paxos logic (i.e., extensions to OpenFlow). Section 9.2.2 discusses the
possibility of implementing consensus using unmodified OpenFlow switches.

H2020-ICT-2014-1 Project No. 644960 72

WP2 / D2.1 ENDEAVOUR Version 1.0

9.2.1 Paxos in SDN Switches

We argue that performance benefits could be gained by moving Paxos
consensus logic into the network devices themselves. Specifically, network
switches could play the role of coordinators and acceptors. The advantages
would be twofold. First, messages would travel fewer hops in the
network, therefore reducing the latency for the replicated system to reach
consensus. Second, coordinators and acceptors typically act as bottlenecks
in Paxos implementations, because they must aggregate or multiplex
multiple messages. The consensus protocol we describe in Section 9.2.2
obviates the need for coordinator logic.

A switch-based implementation of Paxos need only implement Phase 2
of the protocol described in Section 9.1. Since Phase 1 does not depend
on any particular value, it could be run ahead of time for a large bounded
number of values. The pre-computation would need to be re-run under two
scenarios: either (i) the Paxos instance approaches the bounded number
of values, or (ii) the device acting as coordinator changes (possibly due to
failure).

Unfortunately, even implementing Phase 2 of the Paxos logic in SDN
switches goes far beyond what is expressible in the current OpenFlow API,
which is limited to basic match-action rules, simple statistics gathering,
and modest packet re-writes (e.g., incrementing the time-to-live). Below,
we identify a sufficient set of operations that the switch could perform to
implement Paxos. Note, we are not claiming that this set of operations is
necessary. As we will see in Section 9.2.2, the protocol can be modified to
avoid some of these requirements.

Generate round and sequence number. Each switch coordinator must
be able to generate a unique round number (i.e., the c-rnd variable),
and a monotonically increasing, gap-free sequence number.

Persistent storage. Each switch acceptor must store the latest ballot it
has seen (c-rnd), the latest accepted ballot (v-rnd), and the latest
value accepted.

Stateful comparisons. Each switch acceptor must be able to compare a
c-round value in a packet header with a c-rnd value that has been
stored. If the new value is higher, then the switch must update the
local state with the new c-round and value, and then broadcast the
message to all learners. Otherwise, the packet could be ignored (i.e.,
dropped).

H2020-ICT-2014-1 Project No. 644960 73

WP2 / D2.1 ENDEAVOUR Version 1.0

Storage cleanup. Stored state must be trimmed periodically.

Recent work on extending OpenFlow suggests that the functionality
described above could be efficiently implemented in switch hardware [11,
13, 14]. Moreover, several existing switches already have support of some
combinations of these features. For example, the NoviSwitch 1132 has
16 GB of SSD storage [87], while the Arista 7124FX [8] has 50 GB of SSD
storage directly usable by embedded applications. Note that current SSDs
typically achieve throughputs of several 100s MB/s [95], which is within the
requirements of a high-performance, network-based Paxos implementation.
The upcoming Netronome network processor NFP-6xxx [86], which is used
to realize advanced switches and programmable NICs, has sequence number
generators and can flexibly perform stateful comparisons.

Also, rather than modifying network switches, a recent hardware trend
towards programmable NICs [10,85] could allow the proposer and acceptor
logic to run at the network edge, on programmable NICs that provide
high-speed processing at minimal latencies (tens of µs). Via the PICe bus,
the programmable NIC could communicate to the host OS and obtain access
to permanent storage.

9.2.2 Fast Network Consensus

Section 9.2.1 describes a sufficient set of functionality that protocol designers
would need to provide to completely implement Paxos logic in forwarding
devices. In this section, we describe NetPaxos, an alternative algorithm
inspired by Fast Paxos. The key idea behind NetPaxos is to distinguish
between two execution modes, a “fast mode” (analogous to Fast Paxos’s
fast rounds), which can be implemented in network forwarding devices with
no changes to existing OpenFlow APIs, and a “recovery mode”, which is
executed by commodity servers.

Both Fast Paxos’s fast rounds and NetPaxos’s fast mode avoid the use of
a Paxos coordinator, but for different motivations. Fast Paxos is designed
to reduce the total number of message hops by optimistically assuming a
spontaneous message ordering. NetPaxos is designed to avoid implementing
coordinator logic inside a switch. In contrast to Fast Paxos, the role of
acceptors in NetPaxos is simplified. In fact, acceptors do not perform
any standard acceptor logic in NetPaxos. Instead, they simply forward all
messages they receive, without doing any comparisons. Because they always
accept, we refer to them as minions in NetPaxos.

Figure 11 illustrates the design of NetPaxos. In the figure, all switches

H2020-ICT-2014-1 Project No. 644960 74

WP2 / D2.1 ENDEAVOUR Version 1.0

Proposer

Minion
(switch)

Serializer
(switch)

Minion
storage

Minion
(switch)

Minion
storage

Minion
(switch)

Minion
storage

Minion
(switch)

Minion
storage

Proposer

Learner Learner

Figure 11: Network Paxos architecture. Switch hardware is shaded grey.
Other devices are commodity servers. The learners each have four network
interface cards.

are shaded in gray. Proposers send messages to the single switch called a
serializer. The serializer is used to establish an ordering of messages from
the proposers. The serializer then broadcasts the messages to the minions.
Each minion forwards the messages to the learners and to a server that acts
as the minion’s external storage mechanism, used to record the history of
“accepted” messages. Note that if switches could maintain persistent state,
there would be no need for the minion storage servers. Each learner has
multiple network interfaces, one for each minion.

The protocol, as described, does not require any additional functionality
beyond what is currently available in the OpenFlow protocol. However, it
does make two important assumptions:

1. Packets broadcast from the serializer to the minions arrive
in the same order. This assumption is important for performance,
not correctness. In other words, if packets are received out-of-order,
the learners would recognize the problem, fail to reach consensus, and
revert to the “recovery mode” (i.e., classic Paxos).

2. Packets broadcast from a minion arrive all in the same order
at its storage and the learners. This assumption is important for
correctness. If this assumption is violated, then learners may decide
different values in an instance of consensus and not be able to recover
a consistent state from examining the logs at the minion storage.

H2020-ICT-2014-1 Project No. 644960 75

WP2 / D2.1 ENDEAVOUR Version 1.0

Recent work on Speculative Paxos [104] shows that packet reordering
happens infrequently in data centers, and can be eliminated by using IP
multicast, fixed length network topologies, and a single top-of-rack switch
acting as a serializer. Our own initial experiments (§ 9.3) also suggest that
these assumptions hold with unmodified network switches when traffic is
non-bursty, and below about 675 Mbps on a 1 Gbps link.

Fast Paxos optimistically assumes a spontaneous message ordering with
no conflicting proposals, allowing proposers to send messages directly to
acceptors. Rather than relying on spontaneous ordering, NetPaxos uses
the serializer to establish an ordering of messages from the proposers. It
is important to note that the serializer does not need to establish a FIFO
ordering of messages. It simply maximizes the chances that acceptors see
the same ordering.

Learners maintain a queue of messages for each interface. Because there
are no sequence or round numbers, learners can only reason about messages
by using their ordering in the queue, or by message value. At each iteration
of the protocol (i.e., consensus instance), learners compare the values of
the messages at the top of their queues. If the head of a quorum with
three queues contain the same message, then consensus has been established
through the fast mode, and the protocol moves to the next iteration. The
absence of a quorum with the same message (e.g., because one of the minions
dropped a packet), leads to a conflict.

Like Fast Paxos [70], NetPaxos requires a two-thirds majority to establish
consensus, instead of a simple majority. A two-thirds majority allows the
protocol to recover from cases in which messages cannot be decided in the
fast mode. If a learner detects conflicting proposals in a consensus instance,
then the learner reverts to recovery mode and runs a classic round of Paxos
to reach consensus on the value to be learned. In this case, the learner must
access the storage of the minions to determine the message to be decided.
The protocol ensures progress as long as at most one minion fails. Since
the non-conflicting scenario is the usual case, NetPaxos typically is able to
reduce both latency and the overall number of messages sent to the network.

Switches and servers may fail individually, and their failures are not
correlated. Thus, there are several possible failure cases that we need to
consider to ensure availability:

• Serializer failure. Since the order imposed by the serializer is not
needed for correctness, the serializer could easily be made redundant,
in which case the protocol would continue to operate despite the
failure of one serializer. Figure 11 shows two backup switches for

H2020-ICT-2014-1 Project No. 644960 76

WP2 / D2.1 ENDEAVOUR Version 1.0

the serializer.

• Minion failure. If any minion fails, the system could continue
to process messages and remain consistent. The configuration in
Figure 11, with four minions, could tolerate the failure of one minion,
and still guarantee progress.

• Learner failure. If the learner fails, it can consult the minion state
to see what values have been accepted, and therefore return to a
consistent state.

A natural question would be to ask: if minions always accept messages,
why do we need them at all? For example, the serializer could simply forward
messages to the learners directly. The algorithm needs minions to provide
fault tolerance. Because each minion forwards messages to their external
storage mechanism, the system has a log of all accepted messages, which it
can use for recovery in the event of device failure, message re-ordering, or
message loss. If, alternatively, the serializer were responsible for maintaining
the log, then it would become a single point of failure.

A final consideration is whether network hardware could be modified to
ensure the NetPaxos ordering assumptions. We discussed this matter with
several industrial contacts at different SDN vendors, and found that there
are various platforms that could enforce the desired packet ordering. For
example, the Netronome NFP-6xxx [86] has a packet reorder block on the
egress path that allows packets to be reordered based on program-controlled
packet sequence numbers. A NetPaxos implementation would assign the
sequence numbers based on when the packets arrive at ingress. The
NetFPGA platform [45] implements a single pipeline where all packet
processing happens sequentially. As such, the NetPaxos ordering assumption
is trivially satisfied. Furthermore, discussions with Corsa Technology [35]
and recent work on Blueswitch [57] indicate that FPGA-based hardware
would also be capable of preserving the ordering assumption.

In the next section, we present experiments that show the expected
performance benefits of NetPaxos when these assumptions hold.

9.3 Evaluation

Our evaluation focuses on two questions: (i) how frequently are our
assumptions violated in practice, and (ii) what are the expected performance
benefits that would result from moving Paxos consensus logic into forwarding
devices.

H2020-ICT-2014-1 Project No. 644960 77

WP2 / D2.1 ENDEAVOUR Version 1.0

Experimental setup. All experiments were run on a cluster with two
types of servers. Proposers were Dell PowerEdge SC1435 2-CPU servers
with 4 x 2 GHz AMD cores, 4 GB RAM, and a 1 Gbps NIC. Learners were
Dell PowerEdge R815 8-CPU servers with 64 x 2 GHz AMD hyperthreaded
cores, 128 GB RAM, and 4 x 1 Gbps NICs. The machines were connected in
the topology shown in Figure 11. We used three Pica8 Pronto 3290 switches.
One switch played the role of the serializer. The other two were divided into
two virtual switches, for a total of four virtual switches acting as minions.
Ordering assumptions. The design of NetPaxos depends on the
assumption that switches will forward packets in a deterministic order.
Section 9.2.2 argues that such an ordering could be enforced by changes to
the switch firmware. However, in order to quantify the expected performance
benefits of moving consensus logic into forwarding devices, we measured how
often the assumptions are violated in practice with unmodified devices.

There are two possible cases to consider if the ordering assumptions
do not hold. First, learners could deliver different values. Second, one
learner might deliver, when the other does not. It is important to distinguish
these two cases because delivering two different values for the same instance
violates correctness, while the other case impacts performance (i.e., the
protocol would be forced to execute in recovery mode, rather than fast
mode).

The experiment measures the percentage of values that result in a learner
disagreement or a learner indecision for increasing message throughput
sent by the proposers. For each iteration of the experiment, the proposers
repeatedly sleep for 1 ms, and then send n messages, until 500,000 messages
have been sent. To increase the target rate, the value of n is increased. The
small sleep time interval ensures that traffic is non-bursty. Each message
is 1,470 bytes long, and contains a sequence number, a proposer id, a
timestamp, and some payload data.

Two learners receive messages on four NICs, which they processes in
FIFO order. The learners dump the contents of each packet to a separate
log file for each NIC. We then compare the contents of the log files, by
examining the messages in the order that they were received. If the learner
sees the same sequence number on at least 3 of its NICs, then the learner can
deliver the value. Otherwise, the learner cannot deliver. We also compare
the values delivered on both learners, to see if they disagree.

Figure 12 shows the results, which are encouraging. We saw no
disagreement or indecision for throughputs below 57,457 messages/second.
When we increased the throughput to 65,328 messages/second, we measured
no learner disagreement, and only 0.3% of messages resulted in learner

H2020-ICT-2014-1 Project No. 644960 78

WP2 / D2.1 ENDEAVOUR Version 1.0

0.
00

0.
10

0.
20

0.
30

Messages / Second

P
er

ce
nt

ag
e

of
 P

ac
ke

ts
 R

es
ul

tin
g

in
 D

is
ag

re
em

en
t o

r
In

de
ci

si
on

10,000 30,000 50,000

Indecisive
Disagree

Figure 12: Evaluation of ordering assumptions showing the percentage of
messages in which learners either disagree, or cannot make a decision.

indecision. Note that given a message size of 1,470 bytes, 65,328
messages/second corresponds to about 768 Mbps, or 75% of the link capacity
on our test configuration.

Although the results are not shown, we also experimented with sending
bursty traffic. We modified the experiment by increasing the sleep time to
1 second. Consequently, most packets were sent at the beginning of the 1
second time window, while the average throughput over the 1 second reached
the target rate. Under these conditions, we measured larger amounts of
indecision, 2.01%, and larger disagreement, 1.12%.

Overall, these results suggest that the NetPaxos ordering assumptions
are likely to hold for non-bursty traffic for throughput less than 57,457
messages/second. As we will show, this throughput is orders of magnitude
greater than a basic Paxos implementation.
NetPaxos expected performance. Without enforcing the assumptions
about packet ordering, it is impossible to implement a complete, working
version of the NetPaxos protocol. However, given that the prior experiment
shows that the ordering assumption is rarely violated, it is still possible
to compare the expected performance with a basic Paxos implementation.
This experiment quantifies the performance improvements we could expect
to get from a network-based Paxos implementation for a best case scenario.

We measured message throughput and latency for NetPaxos and an open

H2020-ICT-2014-1 Project No. 644960 79

WP2 / D2.1 ENDEAVOUR Version 1.0

0.
5

1.
5

2.
5

3.
5

Messages / Second

La
te

nc
y

(m
s)

10,000 30,000 50,000

Basic Paxos
NetPaxos

Figure 13: Evaluation of performance showing the throughput vs. latency
for basic Paxos and NetPaxos.

source implementation of basic Paxos8 that has been used previously in
replication literature [79,111]. As with the prior experiment, two proposers
send messages at increasing throughput rates by varying the number of
messages sent for 1 ms time windows. Message latency is measured one
way, using the time stamp value in the packet, so the accuracy depends on
how well the server clocks are synchronized. To synchronize the clocks, we
re-ran NTP before each iteration of the experiment.

The results, shown in Figure 13, suggest that moving consensus
logic into network devices can have a dramatic impact on application
performance. NetPaxos is able to achieve a maximum throughput of 57,457
messages/second. In contrast, with basic Paxos the coordinator becomes
CPU bound, and is only able to send 6,369 messages/second.

Latency is also improved for NetPaxos. The lowest latency that basic
Paxos is able to provide is 1.39 ms, when sending at a throughput of only
1,531 messages/second. As throughput increases, latency also increases
sharply. At 6,369 messages/second, the latency is 3.67 ms. In contrast, the
latency of NetPaxos is both lower, and relatively unaffected by increasing
throughput. For low throughputs, the latency is 0.15 ms, and at 57,457
messages/second, the latency is 0.37 ms. In other words, NetPaxos reduces
latency by 90%.

We should stress that these numbers indicate a best case scenario for

8https://bitbucket.org/sciascid/libpaxos

H2020-ICT-2014-1 Project No. 644960 80

WP2 / D2.1 ENDEAVOUR Version 1.0

NetPaxos. One would expect that modifying the switch behavior to enforce
the desired ordering constraints might add overhead. However, the initial
experiments are extremely promising, and suggest that moving consensus
logic into network devices could dramatically improve the performance of
replicated systems.

9.4 Related Work

Network support for applications. Several recent projects have
demonstrated that large-scale, data processing applications, such as Hadoop,
can benefit from improved network support. For example, PANE [42],
EyeQ [61], and Merlin [113] all use resource scheduling to improve
the job performance, while NetAgg [78] leverages user-defined combiner
functions to reduce network congestion. These projects have largely focused
on improving application performance through traffic management. In
contrast, this work argues for moving application logic into network devices.

Speculative Paxos [104] uses a combination of techniques to eliminate
packet reordering in a data center, including IP multicast, fixed length
network topologies, and a single top-of-rack switch acting as a serializer.
NetPaxos uses similar techniques to ensure message ordering. However,
NetPaxos moves Paxos logic into the switches, while Speculative Paxos uses
servers to provide the role of acceptors.
OpenFlow extensions. To better support the needs of networked
applications, there has been an increasing interest in extending OpenFlow
with a more generalized API. From academia, there have been several
recent proposals [11, 14, 61]. In industry, there has been a longstanding
discussion about how to support stateful operations in the new versions
of the OpenFlow protocol. The presiding standards body, the Open
Networking Foundation (ONF), includes two working groups on the topic:
one to standardize extensions to the protocol (EXT-WG), and one focused
on forwarding abstractions (FAWG).
Replication protocols. Research on replication protocols for high
availability is quite mature. Existing approaches for replication-transparent
protocols, notably protocols that implement some form of strong consistency
(e.g., linearizability, serializability) can be roughly divided into three
classes [27]: (a) state-machine replication [67, 109], (b) primary-backup
replication [89], and (c) deferred update replication [27].

At the core of all classes of replication protocol discussed above, there lies
a message ordering mechanism. This is obvious in state-machine replication,
where commands must be delivered in the same order by all replicas, and

H2020-ICT-2014-1 Project No. 644960 81

WP2 / D2.1 ENDEAVOUR Version 1.0

in deferred update replication, where state updates must be delivered in
order by the replicas. In primary-backup replication, commands forwarded
by the primary must be received in order by the backups; besides, upon
electing a new primary to replace a failed one, backups must ensure that
updates “in-transit” submitted by the failed primary are not intertwined
with updates submitted by the new primary (e.g., [97]).

Although many mechanisms have been proposed in the literature to order
messages consistently in a distributed system [36], very few protocols have
taken advantage of network specifics. Protocols that exploit spontaneous
message ordering to improve performance are in this category (e.g., [70,98,
99]). The idea is to check whether messages reach their destination in order,
instead of assuming that order must be always constructed by the protocol
and incurring additional message steps to achieve it. As we claim in the
proposal, ordering protocols have much to gain (e.g., in performance, in
simplicity) by tightly integrating with the underlying network layer.

9.5 Summary

Software-defined networking offers improved network programmability,
which can not only simplify network management, but can also enable a
tighter integration with distributed applications. This integration means
that networks can be tailored specifically to the needs of the deployed
applications, and improve application performance.

This work proposes two protocol designs which would move Paxos
consensus logic into network forwarding devices. Although neither of these
protocols can be fully implemented without changes to the underlying
switch firmware, all of these changes are feasible in existing hardware.
Moreover, our initial experiments show that moving Paxos into switches
would significantly increase throughput and reduce latency.

Paxos is a fundamental protocol used by fault-tolerant systems, and
is widely used by data center applications. Consequently, performance
improvements in the protocol implementation would have a great impact
not only on the services built with Paxos, but also on the applications that
use those services.

10 Analysis of Commercially-Available Switches

In this section, we present in brief the capabilities of some OpenFlow-enabled
switches, based on publicly available data presented by the manufacturers.
Among the switches that were considered were the data planes NoviSwitch

H2020-ICT-2014-1 Project No. 644960 82

WP2 / D2.1 ENDEAVOUR Version 1.0

2128 [88] and Corsa’s DP64xx family [34], Original Design Manufacturer
(ODM) switches and chipsets such as Brocade’s VDX series [16], the
Mellanox SX1036 series [115] and Broadcom’s StrataXGS Trident II
switching family [30] and finally commercial off-the-self (COTS) switches
such as the Arista 7050SX series [7].

These switches represent a wide variety of performance characteristics
and application areas, with throughputs ranging from 240Gbps (NoviSwitch)
to 4.03 Tbps (Mellanox and Brocade switches). All of them implement
10 and 40 Gbps Ethernet at their ports, with Mellanox also supporting
56Gbps and Corsa and Brocade supporting 100 Gbps Ethernet. At the
same time, the documented latency varies from 220ns (Mellanox SX1036)
to 4us (Brocade VDX).

Of these switches, the Mellanox SX1036 supports the 1.0 version of
OpenFlow, as does the current version of the Arista 7050SXs Extensible
Operating System (EOS). The Trident II switch family implements
Broadcom’s OpenFlow Data Plane Abstraction (OF-DPA) [32, 33] which
supports OpenFlow 1.3+. Brocades VCS Fabric technology [17] implements
OpenFlow 1.3, with support for up to 128K flows, also providing the
capability to overlap traditional routing and software-defined routing on the
same port. Contrary to the previous ones, the NoviFlow and Corsa switches
are specifically designed for use on SDN-enabled fabrics. NoviSwitch
supports fully OpenFlow 1.3, along with selected features of versions 1.3.5
and 1.4. It supports 28 flow tables, with a programmable TCAM memory
that can contain up to 1M flow entries and allows 12K flow modifications per
second. Similarly, the Corsa data planes also support OVS-based OpenFlow
1.3+, with 10 programmable flow tables, 1M flow entries and 10K flow
modifications per second.

As far as monitoring is concerned, all of these switches, being
SDN-enabled, provide the OpenFlow object database with port counters,
timers etc. In addition, they can be monitored via SNMP v1, v2, v3 [23]
(with the sole exception of the Corsa data plane) and tools built on top of
it, such as RMON [116]. Furthermore, the Brocade, Mellanox and Arista
switches support the sFlow monitoring protocol [103] for sampled packet
export at Layer 2 and port mirroring (a.k.a. Switched Port Analyzer,
SPAN), which duplicates all traffic of a designated subset of ports to
monitoring ports for analysis. Moreover, Arista provides the CloudVision
service [9] and Broadcom offers BroadView [31] to their switches, both
enabling real-time streaming of telemetry data, an alternative to legacy
polling with SNMP.

H2020-ICT-2014-1 Project No. 644960 83

WP2 / D2.1 ENDEAVOUR Version 1.0

11 Acronyms

ODM Original Design Manufacturer

Euro-IX Euro-Internet eXchange

MAC Media Access Control

VLAN Virtual Local Area Network

IGP Interior Gateway Protocol

OSPF Open Shortest Path First

IS-IS Intermediate System to Intermediate System

RS Route Server

RIR Regional Internet Registry

IANA Internet Assigned Numbers Authority

IRR Internet Routing Registries

RADB Routing Assets DataBase

API Application Program Interface

ONOS Open Network Operating System

SDX Software Defined eXchange

DHCP Dynamic Host Configuration Protocol

CDP Cisco Discovery Protocol

LLDP Link Layer Discovery Protocol

CPU Central Processing Unit

CPC Consistent Policy Composition

ND Neighbor Discovery

NDv6 Neighbor Discovery version 6

ICMPv6 Internet Control Message Protocol version 6

H2020-ICT-2014-1 Project No. 644960 84

WP2 / D2.1 ENDEAVOUR Version 1.0

L2 Layer 2

RPKI Resource Public Key Infrastructure

FIFO First-In First-Out

NIB Network Information Base

NP Non Polynomial

SSD Solid-State Drive

NIC Network Interface Controller

FPGA Field-Programmable Gate Array

RAM Random-access memory

NTP Network Time Protocol

ONF Open Networking Foundation

SNMP Simple Network Management Protocol

STM Software Transactional Memory

LAN Local Area Network

LDP Label Distribution Protocol

MPLS MultiProtocol Label Switching

LSP Label Switched Path

TRILL Transparent Interconnect of Lots of Links

RSTP Rapid Spanning Tree Protocol

IEEE Institute of Electrical and Electronics Engineers

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

EOS Extensible Operating System

SDN Software Defined Networking

H2020-ICT-2014-1 Project No. 644960 85

WP2 / D2.1 ENDEAVOUR Version 1.0

RIB Routing Information Base

BGP Border Gateway Protocol

ISP Internet Service Provider

IXP Internet eXchange Point

QoS Quality of Service

SLA Service-Level Agreement

ISP Internet Service Provider

AS Autonomous System

IP Internet Protocol

DE-CIX German Commercial Internet Exchange

AMS-IX Amsterdam Internet Exchange

MSK-IX Moscow Internet Exchange

LINX London Internet Exchange

PoP Point of Presence

VPN Virtual Private Network

DDoS Distributed Denial of Service

VPLS Virtual Private LAN Services

UDP User Datagram Protocol

EVPN Ethernet Virtual Private Network

VXLAN Virtual Extensible Local Area Network

ARP Address Resolution Protocol

ND Neighbor Discovery

ACL Access Control List

H2020-ICT-2014-1 Project No. 644960 86

WP2 / D2.1 ENDEAVOUR Version 1.0

References

[1] K. Agarwal, C. Dixon, E. Rozner, and J. Carter. Shadow macs:
Scalable label-switching for commodity ethernet. In Hot Topics in
Software Defined Networking (HotSDN). ACM, 2014.

[2] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and
W. Willinger. Anatomy of a Large European IXP. In Proceedings of
the ACM SIGCOMM 2012 conference on Applications, technologies,
architectures, and protocols for computer communication, pages
163–174. ACM, 2012.

[3] AMS-IX. Allowed traffic types on unicast peering lans.
http://ams-ix.net/technical/specifications-descriptions/

allowed-traffic.

[4] Ams-ix annual reports. https://ams-ix.net/about/

annual-reports--2.

[5] Follow-up on previous incident at AMS-IX platform. https://

ams-ix.net/newsitems/195.

[6] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste
Jeannin, Dexter Kozen, Cole Schlesinger, and David Walker. NetKAT:
Semantic Foundations for Networks. In POPL, 2014.

[7] Arista. Arista 7050SX Series 10/40G Data Center Switches datasheet.
https://www.arista.com/assets/data/pdf/Datasheets/

7050SX-128_Datasheet.pdf.

[8] Arista. Arista 7124FX Application Switch datasheet. http://www.

arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf.

[9] Arista. Arista EOS CloudVision: Cloud Automation for Everyone.
https://www.arista.com/assets/data/pdf/Whitepapers/

CloudVision_WP_0815.pdf.

[10] Hitesh Ballani, Paolo Costa, Christos Gkantsidis, Matthew P.
Grosvenor, Thomas Karagiannis, Lazaros Koromilas, and Greg
O’Shea. Enabling End Host Network Functions. In SIGCOMM
Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), August 2015.

H2020-ICT-2014-1 Project No. 644960 87

http://ams-ix.net/technical/specifications-descriptions/allowed-traffic
http://ams-ix.net/technical/specifications-descriptions/allowed-traffic
https://ams-ix.net/about/annual-reports--2
https://ams-ix.net/about/annual-reports--2
https://ams-ix.net/newsitems/195
https://ams-ix.net/newsitems/195
https://www.arista.com/assets/data/pdf/Datasheets/7050SX-128_Datasheet.pdf
https://www.arista.com/assets/data/pdf/Datasheets/7050SX-128_Datasheet.pdf
http://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
http://www.arista.com/assets/data/pdf/7124FX/7124FX_Data_Sheet.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/CloudVision_WP_0815.pdf
https://www.arista.com/assets/data/pdf/Whitepapers/CloudVision_WP_0815.pdf

WP2 / D2.1 ENDEAVOUR Version 1.0

[11] Giuseppe Bianchi, Marco Bonola, Antonio Capone, and Carmelo
Cascone. OpenState: Programming Platform-Independent Stateful
Openflow Applications Inside the Switch. In SIGCOMM Computer
Communication Review (CCR), volume 44, pages 44–51, April 2014.

[12] BigSwitch. Switch Light. http://www.bigswitch.com/products/

switch-light.

[13] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin
Vahdat, George Varghese, and David Walker. P4: Programming
Protocol-Independent Packet Processors. SIGCOMM Computer
Communication Review (CCR), 44(3):87–95, July 2014.

[14] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick
McKeown, Martin Izzard, Fernando Mujica, and Mark Horowitz.
Forwarding Metamorphosis: Fast Programmable Match-Action
Processing in Hardware for SDN. In SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), pages 99–110, August 2013.

[15] V. Boteanu and H. Bagheri. Minimizing arp traffic in the ams-ix
switching platform using openflow. Master’s thesis, Universiteit van
Amsterdam, the Netherlands, 2013.

[16] Brocade. Brocade VDX 8770 Switch datasheet. http://www.

brocade.com/content/dam/common/documents/content-types/

datasheet/brocade-vdx-8770-ds.pdf.

[17] Brocade. Exploring Software-Defined Networking with Brocade.
http://www.brocade.com/content/dam/common/documents/

content-types/whitepaper/exploring-sdn-wp.pdf.

[18] Mike Burrows. The Chubby Lock Service for Loosely-Coupled
Distributed Systems. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI), pages 335–350, November 2006.

[19] Matthew Caesar, Donald Caldwell, Nick Feamster, Jennifer Rexford,
Aman Shaikh, and Jacobus van der Merwe. Design and
Implementation of a Routing Control Platform. In NSDI, 2005.

[20] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid.
Software Transactional Networking: Concurrent and Consistent Policy
Composition. In HotSDN, 2013.

H2020-ICT-2014-1 Project No. 644960 88

http://www.bigswitch.com/products/switch-light
http://www.bigswitch.com/products/switch-light
http://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-vdx-8770-ds.pdf
http://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-vdx-8770-ds.pdf
http://www.brocade.com/content/dam/common/documents/content-types/datasheet/brocade-vdx-8770-ds.pdf
http://www.brocade.com/content/dam/common/documents/content-types/whitepaper/exploring-sdn-wp.pdf
http://www.brocade.com/content/dam/common/documents/content-types/whitepaper/exploring-sdn-wp.pdf

WP2 / D2.1 ENDEAVOUR Version 1.0

[21] Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. A
Distributed and Robust SDN Control Plane for Transactional Network
Updates. In Proceedings of INFOCOM’15), Apr 2015.

[22] Martin Casado, Nate Foster, and Arjun Guha. Abstractions for
Software-Defined Networks. Commun. ACM, 57(10), 2014.

[23] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin. Simple network
management protocol (snmp), 1990.

[24] Ignacio Castro, Juan Camilo Cardona, Sergey Gorinsky, and Pierre
Francois. Remote Peering: More Peering without Internet Flattening.
In Proceedings of CoNEXT. ACM, 2014.

[25] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos
Made Live: An Engineering Perspective. In ACM Symposium on
Principles of Distributed Computing (PODC), pages 398–407, August
2007.

[26] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The
Weakest Failure Detector for Solving Consensus. Journal of the ACM,
43(4), July 1996.

[27] B. Charron-Bost, F. Pedone, and A. Schiper, editors. Replication:
Theory and Practice, volume 5959 of Lecture Notes in Computer
Science. Springer, 2010.

[28] Angela Chiu, Vijay Gopalakrishnan, Bo Han, Murad Kablan, Oliver
Spatscheck, Chengwei Wang, and Yang Xu. Edgeplex: Decomposing
the provider edge for flexibilty and reliability. In Proceedings of the
1st ACM SIGCOMM Symposium on Software Defined Networking
Research (SOSR), SOSR’ 15, New York, NY, USA, 2015. ACM.

[29] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes,
Christopher Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev,
Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian
Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay
Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth
Wang, and Dale Woodford. Spanner: Google’s Globally-Distributed
Database. In USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 251–264, October 2012.

H2020-ICT-2014-1 Project No. 644960 89

WP2 / D2.1 ENDEAVOUR Version 1.0

[30] Broadcom Corp. Broadcom BCM56850 StrataXGS Trident II
Switching Technology. https://www.broadcom.com/collateral/pb/
56850-PB03-R.pdf.

[31] Broadcom Corp. Building an Open Source Data Center Monitoring
Tool Using Broadcom BroadView Instrumentation Software. https:

//www.broadcom.com/collateral/tb/BroadView-TB200-R.pdf.

[32] Broadcom Corp. Engineered Elephant Flows for Boosting Application
Performance in Large-Scale CLOS Networks. https://www.

broadcom.com/collateral/wp/OF-DPA-WP102-R.pdf.

[33] Broadcom Corp. OpenFlow Data Plane Abstraction (OF-DPA):
Abstract Switch Specification. https://www.broadcom.com/docs/

support/OF-DPA-Specs_v2.pdf.

[34] Corsa Technology. Corsa Product Overview – DP64xx Data
Plane Family. http://www.corsa.com/wp-content/uploads/2014/

11/Corsa-Product-Overview.pdf.

[35] Corsa Technology. http://www.corsa.com/.

[36] X. Defago, A. Schiper, and P. Urban. Total Order Broadcast and
Multicast Algorithms: Taxonomy and Survey. ACM Computing
Surveys (CSUR), 36:372–421, December 2004.

[37] Carole Delporte-Gallet, Hugues Fauconnier, and Rachid Guerraoui.
Tight Failure Detection Bounds on Atomic Object Implementations.
J. ACM, 57(4), 2010.

[38] Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and
Ramana Kompella. Towards an Elastic Distributed SDN Controller.
In HotSDN, 2013.

[39] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. On the Minimal
Synchronism Needed for Distributed Consensus. Journal of the ACM,
34(1), January 1987.

[40] 26th Euro-IX Forum. https://www.euro-ix.net/events/52#event.

[41] Facebook. Introducing “Wedge” and “FBOSS,”
the next steps toward a disaggregated network.
https://code.facebook.com/posts/681382905244727/

introducing-wedge-and-fboss-the-next-steps-toward-a-disaggregated-network/.

H2020-ICT-2014-1 Project No. 644960 90

https://www.broadcom.com/collateral/pb/56850-PB03-R.pdf
https://www.broadcom.com/collateral/pb/56850-PB03-R.pdf
https://www.broadcom.com/collateral/tb/BroadView-TB200-R.pdf
https://www.broadcom.com/collateral/tb/BroadView-TB200-R.pdf
https://www.broadcom.com/collateral/wp/OF-DPA-WP102-R.pdf
https://www.broadcom.com/collateral/wp/OF-DPA-WP102-R.pdf
https://www.broadcom.com/docs/support/OF-DPA-Specs_v2.pdf
https://www.broadcom.com/docs/support/OF-DPA-Specs_v2.pdf
http://www.corsa.com/wp-content/uploads/2014/11/Corsa-Product-Overview.pdf
http://www.corsa.com/wp-content/uploads/2014/11/Corsa-Product-Overview.pdf
http://www.corsa.com/
https://www.euro-ix.net/events/52#event
https://code.facebook.com/posts/681382905244727/introducing-wedge-and-fboss-the-next-steps-toward-a-disaggregated-network/
https://code.facebook.com/posts/681382905244727/introducing-wedge-and-fboss-the-next-steps-toward-a-disaggregated-network/

WP2 / D2.1 ENDEAVOUR Version 1.0

[42] Andrew Ferguson, Arjun Guha, Chen Liang, Rodrigo Fonseca,
and Shriram Krishnamurthi. Participatory Networking: An API
for Application Control of SDNs. In SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), pages 327–338, August 2013.

[43] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson.
Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM, 32(2), 1985.

[44] Soudeh Ghorbani and Brighten Godfrey. Towards Correct Network
Virtualization. In HotSDN, 2014.

[45] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N. McKeown.
NetFPGA – An Open Platform for Teaching How to Build
Gigabit-Rate Network Switches and Routers. IEEE Transactions on
Education, 51(3):160–161, August 2008.

[46] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and
Thomas Anderson. Scalable Consistency in Scatter. In ACM
Symposium on Operating Systems Principles (SOSP), pages 15–28,
October 2011.

[47] A. Gupta, L. Vanbever, M. Hahbaz, S.P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett.
Sdx: A software defined internet exchange. In SIGCOMM. ACM,
2014.

[48] Trinabh Gupta, Joshua B. Leners, Marcos K. Aguilera, and Michael
Walfish. Improving Availability in Distributed Systems with Failure
Informers. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pages 427–441, April 2013.

[49] Soheil Hassas Yeganeh and Yashar Ganjali. Kandoo: A Framework for
Efficient and Scalable Offloading of Control Applications. In HotSDN,
2012.

[50] Brandon Heller, Rob Sherwood, and Nick McKeown. The Controller
Placement Problem. In HotSDN, 2012.

[51] Maurice Herlihy. Wait-free Synchronization. ACM Trans. Program.
Lang. Syst., 13(1), 1991.

H2020-ICT-2014-1 Project No. 644960 91

WP2 / D2.1 ENDEAVOUR Version 1.0

[52] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N.
Scherer, III. Software Transactional Memory for Dynamic-sized Data
Structures. In PODC, 2003.

[53] Maurice Herlihy and Jeannette M. Wing. Linearizability: A
Correctness Condition for Concurrent Objects. ACM Trans. Program.
Lang. Syst., 12(3):463–492, 1990.

[54] N. Hilliard, E. Jasinska, R. Raszuk, and N. Bakker. Internet exchange
route server operations. Technical report, 2014.

[55] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang,
Vijay Gill, Mohan Nanduri, and Roger Wattenhofer. Achieving High
Utilization with Software-Driven WAN. In SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication (SIGCOMM), pages 15–26, August 2013.

[56] M. Hughes, M. Pels, and H. Michl. Internet exchange point wishlist.
https://www.euro-ix.net/documents/1288-ixp-wishlist-pdf,
2013. [Online; accessed 01-Dec-2014].

[57] Jong Hun Han, Prashanth Mundkur, Charalampos Rotsos, Gianni
Antichi, Nirav Dave, Andrew W. Moore, and Peter G. Neumann.
Blueswitch: Enabling Provably Consistent Configuration of Network
Switches. In 11th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, April 2015.

[58] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon
Poutievski, Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan
Zhou, Min Zhu, Jon Zolla, Urs Hölzle, Stephen Stuart, and Amin
Vahdat. B4: Experience with a Globally-Deployed Software Defined
WAN. In SIGCOMM, 2013.

[59] Elisa Jasinska, Nick Hilliard, Robert Raszuk, and Niels
Bakker. Internet exchange route server. Internet-Draft
draft-jasinska-ix-bgp-route-server-03, IETF Secretariat,
October 2011. http://www.ietf.org/internet-drafts/

draft-jasinska-ix-bgp-route-server-03.txt.

[60] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng,
Changhoon Kim, and David Mazières. Millions of little minions:
Using packets for low latency network programming and visibility. In
SIGCOMM, 2014.

H2020-ICT-2014-1 Project No. 644960 92

https://www.euro-ix.net/documents/1288-ixp-wishlist-pdf
http://www.ietf.org/internet-drafts/draft-jasinska-ix-bgp-route-server-03.txt
http://www.ietf.org/internet-drafts/draft-jasinska-ix-bgp-route-server-03.txt

WP2 / D2.1 ENDEAVOUR Version 1.0

[61] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières,
Balaji Prabhakar, Albert Greenberg, and Changhoon Kim. EyeQ:
Practical Network Performance Isolation at the Edge. In USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), pages 297–312, April 2013.

[62] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula,
Ratul Mahajan, Ming Zhang, Jennifer Rexford, and Roger
Wattenhofer. Dynamic Scheduling of Network Updates. In
SIGCOMM, 2014.

[63] Yuh-Jzer Joung. Asynchronous group mutual exclusion. Distributed
Computing, 13(4), 2000.

[64] Naga Praveen Katta, Jennifer Rexford, and David Walker.
Incremental Consistent Updates. In HotSDN, 2013.

[65] Teemu Koponen, Keith Amidon, Peter Balland, Mart́ın Casado,
Anupam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Natasha
Gude, Paul Ingram, Ethan Jackson, Andrew Lambeth, Romain
Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben Pfaff,
Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling,
Pankaj Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua
Zhang. Network Virtualization in Multi-tenant Datacenters. In NSDI,
2014.

[66] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling,
Leon Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata,
Hiroaki Inoue, Takayuki Hama, and Scott Shenker. Onix: A
Distributed Control Platform for Large-scale Production Networks.
In OSDI, 2010.

[67] Leslie Lamport. Time, Clocks, and the Ordering of Events in
a Distributed System. Communications of the ACM (CACM),
21(7):558–565, July 1978.

[68] Leslie Lamport. How to Make a Multiprocessor Computer that
Correctly Executes Multiprocess Programs. IEEE Transactions on
Computers, 28(9), 1979.

[69] Leslie Lamport. The Part-Time Parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, May 1998.

H2020-ICT-2014-1 Project No. 644960 93

WP2 / D2.1 ENDEAVOUR Version 1.0

[70] Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103,
October 2006.

[71] M. Lasserre and V. Kompella. Virtual private lan service (vpls) using
label distribution protocol (ldp) signaling. RFC 4762, RFC Editor,
January 2007. http://www.rfc-editor.org/rfc/rfc4762.txt.

[72] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja
Feldmann. Panopticon: Reaping the Benefits of Incremental SDN
Deployment in Enterprise Networks. In USENIX ATC, 2014.

[73] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger
Wattenhofer, and David Maltz. zUpdate: Updating Data Center
Networks with Zero Loss. In SIGCOMM, 2013.

[74] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael
Schapira, and Scott Shenker. Ensuring connectivity via data plane
mechanisms. In NSDI, 2013.

[75] Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.
Good Network Updates for Bad Packets: Waypoint Enforcement
Beyond Destination-Based Routing Policies. In HotNets, 2014.

[76] Ratul Mahajan and Roger Wattenhofer. On Consistent Updates in
Software Defined Networks. In HotNets, 2013.

[77] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright. Virtual extensible local
area network (vxlan): A framework for overlaying virtualized layer
2 networks over layer 3 networks. RFC 7348, RFC Editor, August
2014. http://www.rfc-editor.org/rfc/rfc7348.txt.

[78] Luo Mai, Lukas Rupprecht, Abdul Alim, Paolo Costa, Matteo
Migliavacca, Peter Pietzuch, and Alexander L. Wolf. NetAgg: Using
Middleboxes for Application-Specific On-Path Aggregation in Data
Centres. In ACM International Conference on Emerging Networking
Experiments and Technologies (CoNEXT), pages 249–262, December
2014.

[79] Parisa Jalili Marandi, Samuel Benz, Fernando Pedone, and Kenneth P.
Birman. The Performance of Paxos in the Cloud. In IEEE
International Symposium on Reliable Distributed Systems (SRDS),
pages 41–50, October 2014.

H2020-ICT-2014-1 Project No. 644960 94

http://www.rfc-editor.org/rfc/rfc4762.txt
http://www.rfc-editor.org/rfc/rfc7348.txt

WP2 / D2.1 ENDEAVOUR Version 1.0

[80] P.J. Marandi, M. Primi, N. Schiper, and F. Pedone. Ring Paxos: A
High-Throughput Atomic Broadcast Protocol. In IEEE International
Conference on Dependable Systems and Networks (DSN), pages 527
–536, June 2010.

[81] Jedidiah McClurg, Hossein Hojjat, Pavol Černý, and Nate Foster.
Efficient Synthesis of Network Updates. In PLDI, 2015.

[82] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan
Turner. OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM Computer Communication Review (CCR), 38(2):69–74,
March 2008.

[83] T. Mizrahi, O. Rottenstreich, and Y. Moses. TimeFlip: Scheduling
Network Updates with Timestamp-based TCAM Ranges. In
INFOCOM, 2015.

[84] T. Narten, E. Nordmark, W. Simpson, and H. Soliman. Neighbor
discovery for ip version 6 (ipv6). Technical report, 2007.

[85] Netronome. FlowNICs – Accelerated, Programmable Interface Cards.
http://netronome.com/product/flownics.

[86] Netronome. NFP-6xxx - A 22nm High-Performance Network Flow
Processor for 200Gb/s Software Defined Networking, 2013. Talk at
HotChips by Gavin Stark. http://www.hotchips.org/wp-content/
uploads/hc_archives/hc25/HC25.60-Networking-epub/HC25.27.

620-22nm-Flow-Proc-Stark-Netronome.pdf.

[87] NoviFlow. NoviSwitch 1132 High Performance OpenFlow Switch
datasheet. http://noviflow.com/wp-content/uploads/2014/12/

NoviSwitch-1132-Datasheet.pdf.

[88] NoviFlow. NoviSwitch 2128 High Performance OpenFlow
Switch datasheet. http://noviflow.com/wp-content/uploads/

NoviSwitch2128Datasheet.pdf.

[89] B.M. Oki and B.H. Liskov. Viewstamped Replication: A General
Primary-Copy Method to Support Highly-Available Distributed
Systems. In ACM Symposium on Principles of Distributed Computing
(PODC), pages 8–17, August 1988.

H2020-ICT-2014-1 Project No. 644960 95

http://netronome.com/product/flownics
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.60-Networking-epub/HC25.27.620-22nm-Flow-Proc-Stark-Netronome.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.60-Networking-epub/HC25.27.620-22nm-Flow-Proc-Stark-Netronome.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc25/HC25.60-Networking-epub/HC25.27.620-22nm-Flow-Proc-Stark-Netronome.pdf
http://noviflow.com/wp-content/uploads/2014/12/NoviSwitch-1132-Datasheet.pdf
http://noviflow.com/wp-content/uploads/2014/12/NoviSwitch-1132-Datasheet.pdf
http://noviflow.com/wp-content/uploads/NoviSwitch2128Datasheet.pdf
http://noviflow.com/wp-content/uploads/NoviSwitch2128Datasheet.pdf

WP2 / D2.1 ENDEAVOUR Version 1.0

[90] SDN Performance: Raising the bar on SDN control
plane performance, scalability, and high availability.
http://onosproject.org/wp-content/uploads/2014/11/

PerformanceWhitepaperBlackbirdrelease-technical.pdf.

[91] ONOS Wiki Home. https://wiki.onosproject.org/display/

ONOS/ONOS+Wiki+Home.

[92] Open-IX. Ixp technical requirements oix-1. http://www.open-ix.

org/standards/ixp-technical-requirements.

[93] Open Network Linux. http://opennetlinux.org/.

[94] Openflow switch specification. http://www.openflow.org/

documents/openflow-spec-v1.0.0.pdf.

[95] Jian Ouyang, Shiding Lin, Song Jiang, Zhenyu Hou, Yong Wang,
and Yuanzheng Wang. SDF: Software-Defined Flash for Web-Scale
Internet Storage Systems. In ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 471–484, February 2014.

[96] Christos H. Papadimitriou. The Serializability of Concurrent Database
Updates. J. ACM, 26, 1979.

[97] F. Pedone and S. Frolund. Pronto: A Fast Failover Protocol
for Off-the-Shelf Commercial Databases. In IEEE International
Symposium on Reliable Distributed Systems (SRDS), pages 176–185,
October 2000.

[98] F. Pedone and A. Schiper. Optimistic Atomic Broadcast: A Pragmatic
Viewpoint. Theoretical Computer Science, 291:79–101, January 2003.

[99] F. Pedone, A. Schiper, P. Urban, and D. Cavin. Solving Agreement
Problems with Weak Ordering Oracles. In European Dependable
Computing Conference (EDCC), October 2002.

[100] I. Pepelnjak. Could ixps use openflow to scale? The Middle East
Network Operators Group (MENOG), 2012.

[101] Peter Pereš́ıni, Maciej Kuźniar, Marco Canini, and Dejan Kostić.
ESPRES: Transparent SDN Update Scheduling. In HotSDN’14, Aug
2014.

H2020-ICT-2014-1 Project No. 644960 96

http://onosproject.org/wp-content/uploads/2014/11/PerformanceWhitepaperBlackbirdrelease-technical.pdf
http://onosproject.org/wp-content/uploads/2014/11/PerformanceWhitepaperBlackbirdrelease-technical.pdf
https://wiki.onosproject.org/display/ONOS/ONOS+Wiki+Home
https://wiki.onosproject.org/display/ONOS/ONOS+Wiki+Home
http://www.open-ix.org/standards/ixp-technical-requirements
http://www.open-ix.org/standards/ixp-technical-requirements
http://opennetlinux.org/
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

WP2 / D2.1 ENDEAVOUR Version 1.0

[102] R. Perlman, D. Eastlake, D. Dutt, S. Gai, and A. Ghanwani. Routing
bridges (rbridges): Base protocol specification. RFC 6325, RFC
Editor, July 2011. http://www.rfc-editor.org/rfc/rfc6325.txt.

[103] Peter Phaal, Sonia Panchen, and Neil McKee. Inmon corporation’s
sflow: A method for monitoring traffic in switched and routed
networks. Technical report, RFC 3176, 2001.

[104] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma,
and Arvind Krishnamurthy. Designing Distributed Systems Using
Approximate Synchrony in Data Center Networks. In USENIX
Symposium on Networked Systems Design and Implementation
(NSDI), March 2015.

[105] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and
David Walker. Abstractions for Network Update. In SIGCOMM, 2012.

[106] Philipp Richter, Georgios Smaragdakis, Anja Feldmann, Nikolaos
Chatzis, Jan Boettger, and Walter Willinger. Peering at Peerings:
On the Role of IXP Route Servers. In Proceedings of ACM IMC 2014,
Vancouver, Canada, November 2014.

[107] A. Sajassi, R. Aggarwal, N. Bitar, A. Isaac, J. Uttaro, J. Drake, and
W. Henderickx. Bgp mpls-based ethernet vpn. RFC 7432, RFC Editor,
February 2015. http://www.rfc-editor.org/rfc/rfc7432.txt.

[108] Stefan Schmid and Jukka Suomela. Exploiting Locality in Distributed
SDN Control. In HotSDN, 2013.

[109] F. B. Schneider. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. ACM Computing Surveys (CSUR),
22(4):299–319, December 1990.

[110] A. Schwabe and K. Holger. Using mac addresses as efficient routing
labels in data centers. In Hot Topics in Software Defined Networking
(HotSDN). ACM, 2014.

[111] D. Sciascia and F. Pedone. Geo-Replicated Storage with Scalable
Deferred Update Replication. In IEEE International Conference on
Dependable Systems and Networks (DSN), pages 1–12, June 2013.

[112] Nir Shavit and Dan Touitou. Software transactional memory.
Distributed Computing, 1997.

H2020-ICT-2014-1 Project No. 644960 97

http://www.rfc-editor.org/rfc/rfc6325.txt
http://www.rfc-editor.org/rfc/rfc7432.txt

WP2 / D2.1 ENDEAVOUR Version 1.0

[113] Robert Soulé, Shrutarshi Basu, Parisa Jalili Marandi, Fernando
Pedone, Robert Kleinberg, Emin Gün Sirer, and Nate Foster.
Merlin: A Language for Provisioning Network Resources. In ACM
International Conference on Emerging Networking Experiments and
Technologies (CoNEXT), pages 213–226, December 2014.

[114] J. Stringer, D. Pemberton, Qiang Fu, C. Lorier, R. Nelson, J. Bailey,
C.N.A. Correa, and C. Esteve Rothemberg. Cardigan: Sdn distributed
routing fabric going live at an internet exchange. In Symposium on
Computers and Communications (ISCC). IEEE, 2014.

[115] Mellanox Technologies. Mellanox SX1036 datasheet. https://www.

mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf.

[116] S Waldbusser, R Cole, C Kalbfleisch, and D Romascanu. Introduction
to the remote monitoring (rmon) family of mib modules. RFC
3577, RFC Editor, August 2003. http://www.rfc-editor.org/rfc/
rfc3577.txt.

[117] M. Wessel and N. Sijm. Effects of ipv4 and ipv6 address resolution
on ams-ix and the arp sponge. Master’s thesis, Universiteit van
Amsterdam, the Netherlands, 2009.

[118] S.H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On Scalability
of Software-Defined Networking. Communications Magazine, IEEE,
51(2), 2013.

H2020-ICT-2014-1 Project No. 644960 98

https://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf
https://www.mellanox.com/related-docs/prod_eth_switches/PB_SX1036.pdf
http://www.rfc-editor.org/rfc/rfc3577.txt
http://www.rfc-editor.org/rfc/rfc3577.txt

	Introduction
	Characteristics of IXP Environments
	Interfaces Characteristics
	Interconnecting Links and Topology
	Layer 2 – Resiliency of Connectivity
	Layer 3 Domain
	Characteristics of the DE-CIX Environment
	Summary

	Requirements of the ENDEAVOUR SDN Architecture
	Preliminary SDN Architecture
	Overview of Technical Building Blocks
	Efficient IXP Fabric
	Abstractions and Architectures for Network State Updates
	Network-Application Co-Design

	Umbrella Fabric
	Umbrella Architecture
	No more broadcast traffic
	Towards a segment routing-like approach

	Key benefits
	Related Works
	Summary

	Transactional Network Updates
	Modeling Software-Defined Networks
	The CPC Problem
	CPC Solutions and Complexity Bounds
	FixTag: Per-Policy Tags
	ReuseTag: Optimal Tag Complexity

	Impossibility for Weaker Port Model
	Related Work
	Summary

	Distributed Network Updates
	Model
	Network primitives
	Packet forwarding.
	Network configuration.

	Problem
	Network update
	Related work
	Network update scheduling
	Segmentation
	Update operation

	Distributed Scheduling
	Creating dependency graph
	Scheduling an update operation

	Accelerating Consensus via Co-Design
	Paxos Background
	Consensus in the Network
	Paxos in SDN Switches
	Fast Network Consensus

	Evaluation
	Related Work
	Summary

	Analysis of Commercially-Available Switches
	Acronyms

