
ENDEAVOUR: Towards a flexible
software-defined network ecosystem

Project name ENDEAVOUR
Project ID H2020-ICT-2014-1 Project No. 644960

Working Package Number 2
Deliverable Number 2.3

Document title Implementation of the SDN architecture
Document version 0.9

Editor in Chief Chiesa, UCLO
Authors Canini, Chiesa, Dietzel, Fernandes

Date 15/12/2016
Reviewer Dietzel, DE-CIX

Date of Review 13/12/2016
Status Public

WP2 / D2.3 ENDEAVOUR Version 0.9

Revision History
Date Version Description Author
21/11/16 0.1 First skeleton draft Canini, Chiesa
23/11/16 0.2 Demonstration of the architecture Canini, Chiesa
24/11/16 0.3 Description of flows to handle ARP Fernandes
30/11/16 0.4 Demonstration of APIs Dietzel
5/12/16 0.5 Executive abstract and corrections Canini
5/12/16 0.6 Revision Chiesa
6/12/16 0.7 Description of access control table Chiesa
13/12/16 0.8 Review Dietzel, Kopp
13/12/16 0.9 Revision of contents based on inter-

nal review
Canini, Chiesa

H2020-ICT-2014-1 Project No. 644960 2

WP2 / D2.3 ENDEAVOUR Version 0.9

Executive Summary

This deliverable demonstrates the implementation of the SDN-enabled EN-
DEAVOUR SDN architecture for IXP fabrics, which is released as open
source software. The ENDEAVOUR SDN-enabled IXP architecture is de-
signed to support the use cases defined in Deliverables 4.2 and 4.3 via the
specification of arbitrarily fine-grained policies by the IXP participants by
means of high-level constructs and APIs. To demonstrate the feasibility of
this approach, in this document we focus on illustrating that our imple-
mentation is capable of transforming the high-level objectives and policies
established by the selected ENDEAVOUR use cases into low-level flow table
entries that customize the forwarding behavior of the IXP fabric.

H2020-ICT-2014-1 Project No. 644960 3

WP2 / D2.3 ENDEAVOUR Version 0.9

Contents

1 Introduction 5

2 Overview of the Implementation 5
2.1 Git repositories . 5
2.2 Development organization . 6
2.3 Code Review . 6
2.4 Tests . 7
2.5 Virtual Machine Development 7

3 Demonstration of the SDN architecture 7
3.1 Getting started . 7
3.2 Emulation environment . 8
3.3 Network topology and BGP/iSDX configuration 8
3.4 SDN fine-grained policy specification 9
3.5 Configuring the setup . 10
3.6 Testing the setup . 10
3.7 Testing the SDN policies . 11
3.8 Check the ARP tables . 12
3.9 Check the content of the OpenFlow tables 13

3.9.1 Dump of edge-1 switch table 13
3.9.2 Dump of core-1 switch table 22

3.10 Example API: Blackholing REST API 22

4 Summary 23

5 Acronyms 24

6 Acknowledgement 24

H2020-ICT-2014-1 Project No. 644960 4

WP2 / D2.3 ENDEAVOUR Version 0.9

1 Introduction

In this report, we document the implementation of the ENDEAVOUR SDN
architecture. We refer the reader to Deliverable 2.2 for a complete description
of the overall architecture. We discuss the organization of the project imple-
mentation in terms of code location, contents, and development process in
Section 2 and the workflow documentation in Section 3, which demonstrates
the ENDEAVOUR SDN architecture prototype.

2 Overview of the Implementation

We first describe the location and development process adopted by the dif-
ferent partners of the ENDEAVOUR project for the prototyping phase of
the ENDEAVOUR’s SDN architecture demonstrator.

2.1 Git repositories

The ENDEAVOUR code is versioned using the git software and hosted on
GitHub 1.

To avoid typical pitfalls of team programming, we decided to adhere to
the following development guidelines2:

• The master branch is always deployable.

• Before starting to work on a new feature or fixing a bug, create a
descriptively named branch of the master one.

• While working in a branch, keep it updated with the master. This
makes it simpler to integrate any future pull request.

• Commit to that branch locally and regularly push the local work to
the same named branch on the server.

• When feedback or help is needed or a branch is ready for merging, a
pull request should be opened.

• After someone else has reviewed a feature, ask the rest of the team
for a green light so that the working branch can be merged with the
master one.

1https://github.com/h2020-endeavour
2Based on http://scottchacon.com/2011/08/31/github-flow.html

H2020-ICT-2014-1 Project No. 644960 5

https://github.com/h2020-endeavour
http://scottchacon.com/2011/08/31/github-flow.html

WP2 / D2.3 ENDEAVOUR Version 0.9

2.2 Development organization

Activities and issues are tracked and visualized with Waffle, a web-based
Kanban-like [1] board system that can easily be synchronized with GitHub.

The Waffle board of the ENDEAVOUR project3 is divided into four
columns: Backlog, which contains features to be implemented, bugs, and
other questions that need to be discussed and are not yet ready to be ad-
dressed. Ready, which contains those tasks that have been discussed and
are ready to be implemented. In-Progress, which contains all the tasks
that are being implemented at a specific time, and Done, which contains
those feature that have been implemented and need to be discussed before
being archived. Each task or activity is described by a card entity, which
contains a brief description of the task, a comment section to append more
detailed information for discussions with other team members, a set of labels
for classifying the type of a task, and one or more people assigned to that
task.

It follows a description of some labels that we added on top of Waffle to
better categorize a task:

• Help Wanted: To be used whenever some external help is needed to
complete a task.

• Question: To be used to get information about a relevant topic or
aspect of the project.

• Request for Comments: To be used to gather feedback from the
other collaborators.

• Bug: Strongly recommended label to describe an issue that needs to
be fixed or, at least, documented for the users.

The ENDEAVOUR team holds a weekly one-hour group call for dis-
cussing and updating each other on the status of the current activities with
the help of the Waffle board. Each task from all the columns is discussed.

2.3 Code Review

We committed to review code written by other members to the best of our
possibilities. The team member that wishes to merge a branch should have
its code reviewed by some other team members that have knowledge about
the affected part of the platform.

3https://waffle.io/h2020-endeavour/endeavour

H2020-ICT-2014-1 Project No. 644960 6

https://waffle.io/h2020-endeavour/endeavour

WP2 / D2.3 ENDEAVOUR Version 0.9

2.4 Tests

Tests are crucial for guaranteeing software reliability and a sound evolution.
While unit tests may be implemented according to the developer’s sense,
behavior tests must always be created and performed.

2.5 Virtual Machine Development

We decided to create a Virtual Machine (VM) that can be easily distributed
and deployed. Hence, we leverage the Vagrant tool.4

3 Demonstration of the SDN architecture

In this section, we demonstrate the functionality of the ENDEAVOUR plat-
form in a tutorial-like style. The reader will be able to repeat all the steps
on its own machine. We aim to provide a closer look at the ENDEAVOUR
forwarding-level by showing how ENDEAVOUR supports fine-grained rout-
ing policies, multi-hop forwarding (with Umbrella), and load-balancing of
traffic. We refer the reader to Deliverable 2.2 for a complete description of
the overall architecture. Due to the low-level, technical nature of this demon-
stration, we focus on a tutorial-style workflow instead of providing a video
demonstration. The videos within Deliverables 4.4 and 4.5 complement this
workflow by presenting a high-level perspective with concrete usages of the
platform.

3.1 Getting started

Please refer to the up-to-date setup instructions described on the GitHub
repository to provision a VM with the ENDEAVOUR platform and install
the necessary software for running the ENDEAVOUR platform. Let $HOME
be the root folder the ENDEAVOUR repository will be located.

$ cd $HOME
$ git clone git@github.com:h2020-endeavour/endeavour.git

Note that the remainder of this section is based on the following Git
commit ID: ef34b6b. This commit can be retrieved by issuing the following
command from the endeavour folder:

$ git checkout ef34b6b
4https://www.vagrantup.com/

H2020-ICT-2014-1 Project No. 644960 7

https://www.vagrantup.com/

WP2 / D2.3 ENDEAVOUR Version 0.9

IXP	
 based	
 on	
 the
ENDEAVOUR	
 platform

.1
c1

c2

edge-­‐1

edge-­‐2

edge-­‐3

edge-­‐4

core-­‐4

core-­‐3

core-­‐2

core-­‐1

.22

.21.1

.11

.254

a1

b1
.254

172.0.0.0/16

.1

.1

.1

.254

.254

100.0.0.0/24

140.0.0.0/24

140.0.0.0/24

140.0.0.0/24

a1_100

b1_140

c1_140

c2_140

5

5

5

5

1
2

34

1

1 1

2

2 2

3

3 3
4

4

4

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

Figure 1: Example IXP network.

Vagrant is used to provision a readily-usable VM with the ENDEAVOUR
platform as follows:

$ cd endeavour && vagrant up

3.2 Emulation environment

The topology will be created with the MiniNet5 emulation tool, which is
installed by the above VM provisioning operation. Each router in MiniNet
runs the zebra and bgpd daemons, part of the Quagga routing engine.6

3.3 Network topology and BGP/iSDX configuration

We use the network topology depicted in Figure 1 to demonstrate the EN-
DEAVOUR platform. Three IXP members A, B, and C connect to an EN-
DEAVOUR IXP fabric, which consists of a Core-Edge topology with four
core switches and four edge switches. Member A owns a BGP border router
a1 connected to edge1, member B owns a BGP border router b1 connected to
edge2, and Member C owns two BGP border routers c1 and c2 connected to
edge3 and edge4, respectively. A host a1_100 with IP address 100.0.0.1 is
connected to member A’s router and three hosts b1_140, c1_140, and c2_140

5http://mininet.org/
6http://www.nongnu.org/quagga/

H2020-ICT-2014-1 Project No. 644960 8

http://mininet.org/
http://www.nongnu.org/quagga/

WP2 / D2.3 ENDEAVOUR Version 0.9

with the same IP address 140.0.0.1 are connected to routers b1, c1, and c2,
respectively. The IXP IP subnet is 172.0.0.0/16 and the exact address of
each member’s border router is depicted in the figure close to the member’s
router. Member A announces 100.0.0.0/24 while members B and C both
announce 140.0.0.0/24. The port numbers used within the IXP fabric are
highlighted in blue.

The MAC addresses of the members’ border routers assigned to the in-
terfaces connected to the IXP fabric are:

border-router MAC-address

a1 08:00:bb:bb:01:00

b1 08:00:bb:bb:02:00

c1 08:00:bb:bb:03:00

c2 08:00:bb:bb:03:01

The virtual MAC addresses are used by the ENDEAVOUR platform to
transmit BGP information to the hosts. Its bits are used to mark whether a
member announced or not an IP subnet. The most-significant bit is used to
notify that a packet has to be processed by the iSDX pipeline. The mapping
of bits to members (in this example) is as follows:

member most-significat-bit

A 2

B 4

C 3

The iSDX pipeline also uses additional identifiers for each member entity:

member iSDX-MAC-identifier

A ∗∗:∗∗:∗∗:∗∗:00:01
B ∗∗:∗∗:∗∗:∗∗:00:02
C ∗∗:∗∗:∗∗:∗∗:00:03

and for each members’ border routers:

border-router iSDX-MAC-identifier

a1 ∗∗:∗∗:∗∗:∗∗:00:01
b1 ∗∗:∗∗:∗∗:∗∗:00:02
c1 ∗∗:∗∗:∗∗:00:00:03
c2 ∗∗:∗∗:∗∗:01:00:03

3.4 SDN fine-grained policy specification

Member A’s outbound routing policies:

H2020-ICT-2014-1 Project No. 644960 9

WP2 / D2.3 ENDEAVOUR Version 0.9

match(dstport=80) >> fwd(B)
match(dstport=4321) >> fwd(C)
match(dstport=4322) >> fwd(C)

HTTP traffic (port 80) is forwarded by member A towards member B
while the traffic sent by member A destined to ports 4321 and 4322 is for-
warded through member C. Member C’s inbound routing policies:

match(dstport=4321) >> fwd(C1)
match(dstport=4322) >> fwd(C2)

Member C configure its routing policies so as to steer traffic directed to
port 4321 and 4322 to its routers C1 and C2, respectively.

3.5 Configuring the setup

Log into the VM machine from the endeavour folder and launch the EN-
DEAVOUR platform using the following commands:

$ vagrant ssh
$ cd iSDX/test
$ bash buildall.sh
$ sudo bash startup.sh -i test1-mh-architecture

That’s it! Your ENDEAVOUR platform is now ready to handle the fine-
grained routing policies specified by your IXP members.

3.6 Testing the setup

We check the status of the network and send some flows of traffic that match
the policies specified in the beginning of this tutorial.

We first check if the route server has correctly advertised the routes by
dumping the IP routing table of member A’s router:

> exec a1 ip route
100.0.0.0/24 dev a1-eth1 proto kernel scope link src 100.0.0.254
140.0.0.0/24 via 172.0.1.1 dev a1-eth0 proto zebra
172.0.0.0/16 dev a1-eth0 proto kernel scope link src 172.0.0.1

We can see that A is directly connected to both 100.0.0.0/24 and
172.0.0.0/16 and it received 140.0.0.0/24 via the zebra routing daemon.

We can verify that the border routers are connected with each other by
executing the following full-mesh of ping commands:

H2020-ICT-2014-1 Project No. 644960 10

WP2 / D2.3 ENDEAVOUR Version 0.9

> exec a1 ping 172.0.0.11 -c 1
> exec a1 ping 172.0.0.21 -c 1
> exec a1 ping 172.0.0.22 -c 1
> exec b1 ping 172.0.0.1 -c 1
> exec b1 ping 172.0.0.21 -c 1
> exec b1 ping 172.0.0.22 -c 1
> exec c1 ping 172.0.0.1 -c 1
> exec c1 ping 172.0.0.11 -c 1
> exec c1 ping 172.0.0.22 -c 1
> exec c2 ping 172.0.0.1 -c 1
> exec c2 ping 172.0.0.11 -c 1
> exec c2 ping 172.0.0.21 -c 1

3.7 Testing the SDN policies

We now want to check that the members’ routing policies are correctly im-
plemented within the fabric. As such, we want to start sending from a host
inside A’s network several flows towards IP 140.0.0.1. A’s outbound spec-
ifies that HTTP traffic should be sent to B and traffic towards ports 4321
and 4322 will be routed to C. Moreover, C’s inbound policy states that traffic
towards Transport Control Protocol (TCP) port 4321 must enter its net-
work at router C1, and traffic towards 4322 must enter its network at router
C2. We will use iperf7 to verify that ENDEAVOUR is implementing these
policies correctly.

Verify HTTP traffic by sending a 10-second flow towards b1_140 with
these commands:

> exec b1_140 iperf -s -B 140.0.0.1 -p 80 &IPERF_SERVER1
> exec a1_100 iperf -c 140.0.0.1 -B 100.0.0.1 -p 80 -t 10

Successful iperf connections should look like this:

> exec b1_140 iperf -s -B 140.0.0.1 -p 80 &IPERF_SERVER1
MM:b1_140 REXEC: iperf -s -B 140.0.0.1 -p 80 &IPERF_SERVER1
MM:b1_140 REXEC: output =
Process (24283) started
> exec a1_100 iperf -c 140.0.0.1 -B 100.0.0.1 -p 80 -t 10
MM:a1_100 REXEC: iperf -c 140.0.0.1 -B 100.0.0.1 -p 80 -t 10
MM:a1_100 REXEC: output =

7https://iperf.fr/

H2020-ICT-2014-1 Project No. 644960 11

https://iperf.fr/

WP2 / D2.3 ENDEAVOUR Version 0.9

--
Client connecting to 140.0.0.1, TCP port 80
Binding to local address 100.0.0.1
TCP window size: 85.3 KByte (default)
--
[4] local 100.0.0.1 port 49594 connected with 140.0.0.1 port 80
[ID] Interval Transfer Bandwidth
[4] 0.0-10.0 sec 3.83 GBytes 3.29 Gbits/sec

Kill the server with > killp b1_140 IPERF_SERVER1.

Verify traffic destined to port 4321 by sending a 10-second flow towards
c1_140 with these commands:

> exec c1_140 iperf -s -B 140.0.0.1 -p 4321 &IPERF_SERVER2
> exec a1_100 iperf -c 140.0.0.1 -B 100.0.0.1 -p 4321 -t 10

Kill the server with > killp c1_140 IPERF_SERVER2.

Verify traffic destined to port 4322 by sending a 10-second flow towards
c1_140 with these commands:

> exec c2_140 iperf -s -B 140.0.0.1 -p 4322 &IPERF_SERVER3
> exec a1_100 iperf -c 140.0.0.1 -B 100.0.0.1 -p 4322 -t 10

Kill the server with > killp c2_140 IPERF_SERVER3.

The iperf has always the same destination IP address, but reaches differ-
ent hosts (b1_140, c1_140, c2_140) due to the more specific SDN policies.

3.8 Check the ARP tables

We now check the state of a1 ARP table:

> exec a1 arp

Address HWtype HWaddress Flags Mask Iface

172.0.255.254 ether 08:00:27:89:3b:ff C a1−eth0
172.0.1.1 ether b0:00:00:00:00:02 C a1-eth0

100.0.0.1 ether 0e:34:4e:d0:db:9a C a1−eth1

Recall from Section 3.6 that a1 received a route towards 140.0.0.0/24
via 172.0.0.1, which is mapped to b0:00:00:00:00:02. This MAC address

H2020-ICT-2014-1 Project No. 644960 12

WP2 / D2.3 ENDEAVOUR Version 0.9

is a virtual MAC address whose first octet contains the BGP reachability
information of 140.0.0.0/24. Namely, b0=(1011 0000), which means that
both members B and C are announcing a route towards that prefix since the
3’rd and 4’th most-significant bits are set to 1.

Observe that if we withdraw 140.0.0.0/24 from member B using the
following command:

> withdraw b1 140.0.0.0/24

We check again the ARP table of a1:

> exec a1 arp

Address HWtype HWaddress Flags Mask Iface

172.0.255.254 ether 08:00:27:89:3b:ff C a1−eth0
172.0.1.1 ether a0:00:00:00:00:03 C a1-eth0

100.0.0.1 ether 0e:34:4e:d0:db:9a C a1−eth1

We can see that the most-significant octet is now a0=(1010 0000), which
means that only member C is announcing a route towards 140.0.0.0/24.

We announce again the 140.0.0.0/24 IP subnet from b1 using the fol-
lowing command:

> announce b1 140.0.0.0/24

3.9 Check the content of the OpenFlow tables

3.9.1 Dump of edge-1 switch table

We dump the forwarding table of edge-1 using the following command:

> local ovs-ofctl -O OpenFlow13 dump-flows edge-1

We observe that there are eight different tables:

Table 0: Monitoring: This table contains the monitoring rules that are used to
count the amount of traffic for some specific flows. We refer the reader
to Deliverable 3.3 for details regarding the monitoring capabilities.

Table 1: Main-In: This table verifies if a packet should be processed by the
iSDX pipeline (moving it to the next table) and it handles ARP traffic
for the iSDX component. The packet is otherwise forwarded to Table
5.

Table 2: Outbound iSDX. This table matches iSDX packets to the configured
outbound policies.

H2020-ICT-2014-1 Project No. 644960 13

WP2 / D2.3 ENDEAVOUR Version 0.9

Table 3: Inbound iSDX. This table matches iSDX packets to the configured
inbound policies and it applies the blackholing policies.

Table 4: Main-Out. This table translates iSDX encodings into real MAC ad-
dresses.

Table 5: Access Control. This table contains the access control rules that
are used to control what traffic is allowed to traverse the IXP fabric.
We refer the reader to Deliverable 4.2 and Deliverable 4.4 for details
regarding the need for this capability and its demonstrator.

Table 6: Load-Balancing: This table assigns a core switch to the forwarded
traffic flows so as to optimize network performance.

Table 7: Umbrella. This table modifies the destination MAC address of a
packet so as to forwarded a packet to the IXP egress port traversing
the previously computed core switch (if any). It leverages the Umbrella
encoding. It also handles ARP traffic within the fabric.

Next, we analyze the content of Table 0 (i.e., the Monitoring Table).
Rules with a greater number have a higher priority. For the sake of simplicity,
we do not discuss rules used to handle traffic towards the controller.

1: cookie=0x3, duration=1568.845s, table=0, n_packets=0,

n_bytes=0, priority=11111,tcp,tp_dst=4322 actions=goto_table:1

2: cookie=0x2, duration=1568.845s, table=0, n_packets=1642101,

n_bytes=20480637514, priority=11111,tcp,tp_dst=4321

actions=goto_table:1

3: cookie=0x1, duration=1568.851s, table=0, n_packets=554880,

n_bytes=4146908960, priority=11111,tcp,tp_dst=80

actions=goto_table:1

4: cookie=0x0, duration=1569.359s, table=0, n_packets=2171082,

n_bytes=143368849, priority=0 actions=goto_table:1

Rules 1,2, and 3 are used to count the amount of packets that match
on port 4322, 4321, 80, respectively. Row 4 matches any other traffic. The
action is always to go to the next table, i.e., Table 1.

We now analyze the content of Table 1 (i.e., the Main-In Table):

1: cookie=0x34, duration=1569.021s, table=1, n_packets=2166791,

n_bytes=143048867, priority=1 actions=goto_table:4

2: cookie=0x0, duration=1569.359s, table=1, n_packets=2,

H2020-ICT-2014-1 Project No. 644960 14

WP2 / D2.3 ENDEAVOUR Version 0.9

n_bytes=180, priority=0 actions=CONTROLLER:65535

3: cookie=0x33, duration=1569.021s, table=1, n_packets=0,

n_bytes=0, priority=2,dl_dst=80:00:00:00:00:00/80:00:00:00:00:00

actions=goto_table:2

4: cookie=0x1, duration=1569.022s, table=1, n_packets=2196985,

n_bytes=24627546762, priority=5,in_port=5

actions=set_field:08:00:bb:bb:01:00->eth_src,goto_table:2

5: cookie=0x32, duration=1569.021s, table=1, n_packets=2, n_bytes=84,

priority=9,arp,dl_dst=00:00:00:01:00:03/00:00:03:ff:ff:ff

actions=set_field:08:00:bb:bb:03:01->eth_dst,goto_table:5

6: cookie=0x2f, duration=1569.022s, table=1, n_packets=3, n_bytes=126,

priority=9,arp,dl_dst=00:00:00:00:00:01/00:00:03:ff:ff:ff

actions=set_field:08:00:bb:bb:01:00->eth_dst,goto_table:5

7: cookie=0x31, duration=1569.021s, table=1, n_packets=2, n_bytes=84,

priority=9,arp,dl_dst=00:00:00:00:00:03/00:00:03:ff:ff:ff

actions=set_field:08:00:bb:bb:03:00->eth_dst,goto_table:5

8: cookie=0x30, duration=1569.022s, table=1, n_packets=6, n_bytes=252,

priority=9,arp,dl_dst=00:00:00:00:00:02/00:00:03:ff:ff:ff

actions=set_field:08:00:bb:bb:02:00->eth_dst,goto_table:5

9: cookie=0x0, duration=1569.359s, table=1, n_packets=4146,

n_bytes=313676, priority=8, tcp,tp_src=179 actions=goto_table:5

10: cookie=0x35, duration=1569.020s, table=1, n_packets=4, n_bytes=168,

priority=8,arp,arp_tpa=172.0.1.0/24

actions=set_field:08:00:27:89:33:ff->eth_dst,goto_table:5

11: cookie=0x0, duration=1569.359s, table=1, n_packets=122, n_bytes=5124,

priority=7,arp actions=goto_table:5

Rule 3 is used to match packets that has to be processed by the iSDX
pipeline for whereas the sending member has not configured any iSDX out-
bound policy. These packets can be easily detected by having their most-
significant bit set to 1.

Rule 4 enforces the source MAC address of a packet to be a unique MAC
address for all the traffic generate by a member that configured an iSDX
oubound policy. It helps to reduce the number of flows in case of a member
with more than one port at the IXP.

Rules 5 to 8 rewrite the virtual destination MAC of ARP replies issued by
the ARP proxy. To avoid broadcast messages the destination MAC address
of the packet is set to be the real MAC address. It then moves it to the
Umbrella table.

Rule 10 is meant to forward ARP requests for a Virtual Next Hop directly

H2020-ICT-2014-1 Project No. 644960 15

WP2 / D2.3 ENDEAVOUR Version 0.9

to the ARP Proxy. It sets the packet destination MAC address to be the
ARP Proxy one and moves the packet to the Umbrella table. Rule 11 is also
used to handle ARP traffic, however, rule 11 is intended to carefully enable
the correct exchange of requests and replies between the route server and
the members during the establishment of BGP sessions.

We now analyze the content of Table 2 (i.e., the Outbound Table):

1: cookie=0x10001, duration=1560.484s, table=2, n_packets=554880,

n_bytes=4146908960, priority=2, tcp,dl_src=08:00:bb:bb:01:00,

dl_dst=10:00:00:00:00:00/50:00:00:00:00:00, tp_dst=80

actions=set_field:80:00:00:00:00:02->eth_dst, goto_table:3

2: cookie=0x38, duration=1569.019s, table=2, n_packets=4, n_bytes=288,

priority=1 actions=goto_table:3

3: cookie=0x0, duration=1569.359s, table=2, n_packets=0, n_bytes=0,

priority=0 actions=CONTROLLER:65535

4: cookie=0x10003, duration=1560.539s, table=2, n_packets=0, n_bytes=0,

priority=2,tcp,dl_src=08:00:bb:bb:01:00,

dl_dst=20:00:00:00:00:00/60:00:00:00:00:00,tp_dst=4322

actions=set_field:80:00:00:00:00:03->eth_dst,goto_table:3

5: cookie=0x10002, duration=1560.540s, table=2, n_packets=1642101,

n_bytes=20480637514, priority=2, tcp,dl_src=08:00:bb:bb:01:00,

dl_dst=20:00:00:00:00:00/60:00:00:00:00:00, tp_dst=4321

actions=set_field:80:00:00:00:00:03->eth_dst, goto_table:3

Rule 1 applies member A’s outbound policies by matching the source
MAC address of a1’ (i.e., 08:00:bb:bb:01:00), verifying that B is announc-
ing a route towards 140.0.0.0/24 by matching the 4’th most-significant bit
of the destination MAC address (i.e. dl_dst=10:00:00:00:00:00/50:00:00:00:00:00),
the TCP port to be 80. If a packet is matched by this rule, its destination
MAC is rewritten with B’s iSDX-identifier (i.e., 80:00:00:00:00:02) and
the packet is moved to the Inbound Table.

Rule 4 − 5 are used to propagate packets destined to ports 4321 and
4322 to the Inbound Table only if member C’s announced a route towards
140.0.0.0/24, where member C’s BGP reachability information is encoded
in the 3’rd most-significant bit of the destination MAC address (i.e. dl_dst=
20:00:00:00:00:00/60:00:00:00:00:00). If a packet is matched by these
rules, its destination MAC is rewritten with C’s iSDX-identifier (i.e., 80:00:00:00:00:03)
and the packet is moved to the Inbound Table.

We now analyze the content of Table 3 (i.e., the Inbound Table):

1: cookie=0x37, duration=1569.019s, table=3, n_packets=554884,

n_bytes=4146909248, priority=1 actions=goto_table:4

H2020-ICT-2014-1 Project No. 644960 16

WP2 / D2.3 ENDEAVOUR Version 0.9

2: cookie=0x0, duration=1569.359s, table=3, n_packets=0, n_bytes=0,

priority=0 actions=CONTROLLER:65535

3: cookie=0x30004, duration=1567.875s, table=3, n_packets=1642101,

n_bytes=20480637514, priority=4,tcp,

dl_dst=00:00:00:00:00:03/00:00:00:00:ff:ff,tp_dst=4321

actions=set_field:00:00:00:00:00:03->eth_dst,goto_table:4

4: cookie=0x30005, duration=1567.874s, table=3, n_packets=0, n_bytes=0,

priority=4,tcp,dl_dst=00:00:00:00:00:03/00:00:00:00:ff:ff,tp_dst=4322

actions=set_field:00:00:00:01:00:03->eth_dst,goto_table:4

5: cookie=0x36, duration=1569.020s, table=3, n_packets=0, n_bytes=0,

priority=3,dl_dst=00:00:00:00:00:03/00:00:00:00:ff:ff

actions=set_field:00:00:00:00:00:03−>eth_dst,goto_table:4
6: cookie=0x31001, duration=40.018s, table=3, n_packets=134474,

n_bytes=203324688, priority=5, udp, dl_src=08:00:bb:bb:01:00,

dl_dst=00:00:00:00:00:03/00:00:00:00:ff:ff,nw_dst=140.0.0.1,

tp_dst=53 actions=drop

Rules 3 and 4 are used to send packets destined to ports 4321 and
4322 towards c1 and c2, respectively. These rules first match on the des-
tination MAC address to verify that a packet is directed towards mem-
ber C (i.e., identified by 00:00:00:00:00:03). If a packet is matched by
rule 3 its destination MAC address is rewritten with the iSDX-identifier
of c1 (i.e., 00:00:00:00:00:03). The same applies for rule 4 but the
destination MAC address is rewritten with the iSDX-identifier of c2 (i.e.,
00:00:00:01:00:03). Rule 6 is an advanced blackholing rule installed by
member C for dropping all UDP packets towards IP 140.0.0.1 destined to
port 53 that are forwarded by member A (i.e., (dl_src=08:00:bb:bb:01:00)
towards member C (i.e., dl_dst=00:00:00:00:00:03/00:00:00:00:ff:ff).

We now analyze the content of Table 4 (i.e., the Main-in Table):

1: cookie=0x3d, duration=1569.019s, table=4, n_packets=2166781,

n_bytes=143048175, priority=1 actions=goto_table:5

2: cookie=0x0, duration=1569.359s, table=4, n_packets=0, n_bytes=0,

priority=0 actions=CONTROLLER:65535

3: cookie=0x39, duration=1569.019s, table=4, n_packets=1642101,

n_bytes=20480637514,

priority=4,dl_dst=00:00:00:00:00:03/00:00:03:ff:ff:ff

actions=set_field:08:00:bb:bb:03:00->eth_dst,goto_table:5

4: cookie=0x3a, duration=1569.019s, table=4, n_packets=0,

n_bytes=0,

H2020-ICT-2014-1 Project No. 644960 17

WP2 / D2.3 ENDEAVOUR Version 0.9

priority=4,dl_dst=00:00:00:01:00:03/00:00:03:ff:ff:ff

actions=set_field:08:00:bb:bb:03:01->eth_dst,goto_table:5

5: cookie=0x3b, duration=1569.019s, table=4, n_packets=0,

n_bytes=0,

priority=4,dl_dst=00:00:00:00:00:01/00:00:00:00:ff:ff

actions=set_field:08:00:bb:bb:01:00->eth_dst,goto_table:5

6: cookie=0x3c, duration=1569.019s, table=4, n_packets=554894,

n_bytes=4146909940,

priority=4,dl_dst=00:00:00:00:00:02/00:00:00:00:ff:ff

actions=set_field:08:00:bb:bb:02:00->eth_dst,goto_table:5

Rules 3 − 6 are used to rewrite the destination MAC of a packet with
the real MAC address of the selected egress interface. For instance, rule 3
replaces c1’s iSDX-identifier, i.e., 00:00:00:00:00:03, with c1’s real MAC
address, i.e., 08:00:bb:bb:03:00. All packets are forwarded to table 5.

We now analyze the content of Table 5 (i.e., the Access Control Table):

1: cookie=0x1, duration=175.640s, table=1, n_packets=267,

n_bytes=22934, priority=1000, tcp, nw_src=172.0.0.0/16,

nw_dst=172.0.0.0/16, tp_dst=179 actions=goto_table:6

2: cookie=0x2, duration=175.639s, table=1, n_packets=400,

n_bytes=21600, priority=900,tcp,tp_dst=179 actions=drop

3: cookie=0x3, duration=175.639s, table=1, n_packets=400,

n_bytes=28000, priority=850,ip,nw_proto=89 actions=drop

4: cookie=0x0, duration=176.390s, table=1, n_packets=525,

n_bytes=38850, priority=0 actions=goto_table:6

Rules 1 has the highest priority and allows any BGP packet between any
two BGP border routers within the IXP fabric to communicate (nw_src=
172.0.0.0/16, nw_dst=172.0.0.0/16). Rule 2 has a lower priority and
drops any BGP traffic from/to external entities. Rule 3 drops any OSPF
traffic (nw_proto=89) from/to any external entity. Rule 4 is used to forward
any other type traffic to the next table.

We now analyze the content of Table 6 (i.e., the Load-Balancing Table).
Note that any packet traversing the IXP fabric will traverse this table.

1: cookie=0x0, duration=1569.359s, table=6, n_packets=14, n_bytes=980,

priority=0 actions=CONTROLLER:65535

2: cookie=0x81, duration=1568.432s, table=6, n_packets=17, n_bytes=714,

priority=10,arp actions=write_metadata:0x40/0xffffffffff,goto_table:7

3: cookie=0x7f, duration=1568.432s, table=6, n_packets=1858,

n_bytes=142803, priority=10,ip,nw_src=0.0.0.0/0.0.0.1,

H2020-ICT-2014-1 Project No. 644960 18

WP2 / D2.3 ENDEAVOUR Version 0.9

nw_dst=0.0.0.0/0.0.0.1 actions=write_metadata:0x30/0xffffffff,

goto_table:7

4: cookie=0x7e, duration=1568.432s, table=6, n_packets=3110,

n_bytes=235410, priority=10,ip,nw_src=0.0.0.1/0.0.0.1,

nw_dst=0.0.0.0/0.0.0.1 actions=write_metadata:0x20/0xffffffff,

goto_table:7

5: cookie=0x80, duration=1568.432s, table=6, n_packets=4360473,

n_bytes=24770336962, priority=10,ip,nw_src=0.0.0.1/0.0.0.1,

nw_dst=0.0.0.1/0.0.0.1 actions=write_metadata:0x40/0xffffffff,

goto_table:7

6: cookie=0x7d, duration=1568.432s, table=6, n_packets=2467,

n_bytes=193150, priority=10,ip,nw_src=0.0.0.0/0.0.0.1,

nw_dst=0.0.0.1/0.0.0.1 actions=write_metadata:0x10/0xffffffff,

goto_table:7

Rules 3−6 match packets based on the least significants bits of the source
and destination IP addresses and assign one of the four core switches based
on the result. The core switches core-1, core-2, core-3, and core-4 are
assigned an identifier 10, 20, 30, and 40, respectively. For instance, rule 3
matches all packets where the least significant bit of the source and destina-
tion IP addresses is 0 and writes 40 in the metadata of the packets to signal
the intent that this packet will have to traverse core-4.

We now analyze the content of Table 7 (i.e., the Umbrella Table):

1: cookie=0x2a, duration=1568.616s, table=7, n_packets=822,

n_bytes=64377,priority=4,metadata=0x30,dl_dst=08:00:bb:bb:03:01

actions=set_field:04:05:00:00:00:00->eth_dst,output:3

2: cookie=0x24, duration=1568.636s, table=7, n_packets=0,

n_bytes=0,priority=4,metadata=0x20,dl_dst=08:00:bb:bb:03:00

actions=set_field:03:05:00:00:00:00->eth_dst,output:2

3: cookie=0x29, duration=1568.616s, table=7, n_packets=2,

n_bytes=84,priority=4,metadata=0x40,dl_dst=08:00:bb:bb:03:01

actions=set_field:04:05:00:00:00:00->eth_dst,output:4

4: cookie=0x1f, duration=1568.640s, table=7, n_packets=823,

n_bytes=64443,priority=4,metadata=0x10,dl_dst=08:00:bb:bb:02:00

actions=set_field:02:05:00:00:00:00->eth_dst,output:1

5: cookie=0x21, duration=1568.639s, table=7, n_packets=554886,

n_bytes=4146909212,priority=4,metadata=0x40,dl_dst=08:00:bb:bb:02:00

actions=set_field:02:05:00:00:00:00->eth_dst,output:4

6: cookie=0x28, duration=1568.617s, table=7, n_packets=0,

H2020-ICT-2014-1 Project No. 644960 19

WP2 / D2.3 ENDEAVOUR Version 0.9

n_bytes=0,priority=4,metadata=0x20,dl_dst=08:00:bb:bb:03:01

actions=set_field:04:05:00:00:00:00->eth_dst,output:2

7: cookie=0x20, duration=1568.640s, table=7, n_packets=0,

n_bytes=0,priority=4,metadata=0x20,dl_dst=08:00:bb:bb:02:00

actions=set_field:02:05:00:00:00:00->eth_dst,output:2

8: cookie=0x22, duration=1568.639s, table=7, n_packets=0,

n_bytes=0,priority=4,metadata=0x30,dl_dst=08:00:bb:bb:02:00

actions=set_field:02:05:00:00:00:00->eth_dst,output:3

9: cookie=0x27, duration=1568.619s, table=7, n_packets=0,

n_bytes=0,priority=4,metadata=0x10,dl_dst=08:00:bb:bb:03:01

actions=set_field:04:05:00:00:00:00->eth_dst,output:1

10: cookie=0x23, duration=1568.639s, table=7, n_packets=823,

n_bytes=64443,priority=4,metadata=0x10,dl_dst=08:00:bb:bb:03:00

actions=set_field:03:05:00:00:00:00->eth_dst,output:1

11: cookie=0x26, duration=1568.636s, table=7, n_packets=0,

n_bytes=0,priority=4,metadata=0x30,dl_dst=08:00:bb:bb:03:00

actions=set_field:03:05:00:00:00:00->eth_dst,output:3

12: cookie=0x25, duration=1568.636s, table=7, n_packets=1642103,

n_bytes=20480637598,priority=4,metadata=0x40,dl_dst=08:00:bb:bb:03:00

actions=set_field:03:05:00:00:00:00->eth_dst,output:4

13: cookie=0x0, duration=1569.359s, table=7, n_packets=0, n_bytes=0,

priority=0 actions=CONTROLLER:65535

14: cookie=0x3, duration=1568.642s, table=7, n_packets=0, n_bytes=0,

priority=8,arp,arp_tpa=172.0.255.253

actions=set_field:08:00:27:89:33:ff->eth_dst,output:7

15: cookie=0x2, duration=1568.643s, table=7, n_packets=59, n_bytes=2478,

priority=8,arp,arp_tpa=172.0.255.254

actions=set_field:08:00:27:89:3b:ff->eth_dst,output:6

16: cookie=0x9, duration=1568.641s, table=7, n_packets=1, n_bytes=42,

priority=8,arp,arp_tpa=172.0.0.22

actions=set_field:04:05:00:00:00:00->eth_dst,output:3

17: cookie=0x8, duration=1568.641s, table=7, n_packets=16, n_bytes=672

priority=8,arp,arp_tpa=172.0.0.21

actions=set_field:03:05:00:00:00:00->eth_dst,output:3

18: cookie=0x1, duration=1568.646s, table=7, n_packets=28, n_bytes=1176,

priority=8,arp,arp_tpa=172.0.0.1

actions=set_field:08:00:bb:bb:01:00->eth_dst,output:5

19: cookie=0x7, duration=1568.642s, table=7, n_packets=18, n_bytes=756,

priority=8,arp,arp_tpa=172.0.0.11

actions=set_field:02:05:00:00:00:00->eth_dst,output:3

H2020-ICT-2014-1 Project No. 644960 20

WP2 / D2.3 ENDEAVOUR Version 0.9

20: cookie=0x79, duration=1568.432s, table=7, n_packets=0, n_bytes=0,

priority=4,dl_dst=00:07:00:00:00:00/00:ff:00:00:00:00

actions=set_field:08:00:27:89:33:ff−>eth_dst,output:7
21: cookie=0x78, duration=1568.432s, table=7, n_packets=3110,

n_bytes=235410, priority=4,dl_dst=00:06:00:00:00:00/00:ff:00:00:00:00

actions=set_field:08:00:27:89:3b:ff−>eth_dst,output:6
22: cookie=0x77, duration=1568.432s, table=7, n_packets=2163492,

n_bytes=142790488,priority=4,dl_dst=00:05:00:00:00:00/00:ff:00:00:00:00

actions=set_field:08:00:bb:bb:01:00->eth_dst,output:5

23: cookie=0x1b, duration=1568.640s, table=7, n_packets=4, n_bytes=168,

priority=4,dl_dst=08:00:27:89:33:ff actions=output:7

24: cookie=0x19, duration=1568.641s, table=7, n_packets=824,

n_bytes=64390, priority=4,dl_dst=08:00:bb:bb:01:00 actions=output:5

25: cookie=0x1a, duration=1568.641s, table=7, n_packets=1036,

n_bytes=78426, priority=4,dl_dst=08:00:27:89:3b:ff actions=output:6

Rules 1, 3, 6, and 9 are used to forward a packet to c2 (i.e., dl_dst=08:00:
bb:bb:03:01) through the core switch core-3, core-4, core-2, and core-1,
respectively. Take, for instance, rule 1. Any packet that matches this rule
will have its destination MAC address rewritten with the Umbrella encoding
of the sequence of outgoing port that will traverse core-3 and edge-3 (i.e.,
04:05:00:00:00:00). The first outgoing port, which is not encoded in the
packet, but is used in the action of the rule, i.e., output: 3. Rules 2, 10, 11,
and 12 are used to forward a packet to c1 (i.e., dl_dst=08:00:bb:bb:03:00)
through the core switch core-2, core-1, core-3, and core-4, respectively.
Rules 4, 5, 7, and 8 are used to forward a packet to b1 (i.e., dl_dst=08:00:bb:
bb:02:00) through the core switch core-1, core-4, core-2, and core-3, re-
spectively. Clearly, packets towards a1 are not sent through the core switches
since a1 is directly connected to edge-1.

Rules 14−19 deal with ARP traffic. To limit broadcast of ARP requests,
the ENDEAVOUR fabric carefully steers the ARP messages towards the
intended receivers. Rules 14, 15, and 18 steer ARP requests towards ARP
Proxy, the route server, and a1, respectively. All these devices are directly
connected to edge-1 so the action corresponding to these rules is simply
forwarding a packet to the correct outgoing port. Rules 16, 17 and 19 steer
ARP requests towards c1, c2, and b1, respectively. All these devices are
not directly connected to edge-1 so the action corresponding to these rules
consists of rewriting the destination MAC address with the Umbrella encoded
path towards the intended destination.

Rule 22 is part of the Umbrella pipeline that checks whether the second

H2020-ICT-2014-1 Project No. 644960 21

WP2 / D2.3 ENDEAVOUR Version 0.9

most-significant octet is 05 and, in that case, forwards it to the outgoing
port identified by 05. In our case, this port corresponds to the interface that
connects edge-1 to a1. In fact, the action of the rule is to rewrite the real
MAC address of a1 in the destination MAC address of the packet.

3.9.2 Dump of core-1 switch table

A core switch consists of only monitoring and Umbrella tables.

1: cookie=0x0, duration=186.742s, table=0, n_packets=252, n_bytes=19410,

priority=0 actions=goto_table:1

2: cookie=0x0, duration=186.742s, table=1, n_packets=8, n_bytes=560,

priority=0 actions=CONTROLLER:65535

3: cookie=0x69, duration=186.173s, table=1, n_packets=121, n_bytes=9383,

priority=4,dl_dst=03:00:00:00:00:00/ff:00:00:00:00:00 actions=output:3

4: cookie=0x67, duration=186.173s, table=1, n_packets=2, n_bytes=84,

priority=4,dl_dst=01:00:00:00:00:00/ff:00:00:00:00:00 actions=output:1

5: cookie=0x6a, duration=186.173s, table=1, n_packets=0, n_bytes=0,

priority=4,dl_dst=04:00:00:00:00:00/ff:00:00:00:00:00 actions=output:4

6: cookie=0x68, duration=186.173s, table=1, n_packets=121, n_bytes=9383,

priority=4,dl_dst=02:00:00:00:00:00/ff:00:00:00:00:00 actions=output:2

Rules 3− 6 are part of the Umbrella pipeline. The first most-significant
octet is used to determine the outgoing port.

3.10 Example API: Blackholing REST API

This section briefly describes the implemented REST API to control ad-
vanced blackholing. Similar APIs are used to install monitoring and access
control rules. Blackholing rules can be created with the following commands:

The ENDEAVOUR environment allows to install rules through a REST
API. We extended that Application Programming Interface (API), which
sits within each participant controller, so as to handle blackholing poli-
cies. To call the API service the following command can be used (e.g.,
http://localhost:5553/bh/):

COMMAND: curl −X GET http://ip_participant_controller:port_api/service/

The API returns the installed blackholing rules. To install a blackholing
rule, a user can post a specific rule (e.g. at url/schema) with the following
command.

COMMAND: curl −X POST −−header ’Content−Type: application/json’

H2020-ICT-2014-1 Project No. 644960 22

WP2 / D2.3 ENDEAVOUR Version 0.9

−d ’{"inbound": [{"action": {"drop": 0}, "cookie": 4097,

"match": {"eth_src": "08:00:bb:bb:01:00", "udp_dst": 53,

"ipv4_dst": "140.0.0.1"}}]}’ http://localhost:5553/bh/

To delete a specific blackholing rule, a user needs to know the cookie of
the rule and he can then call the API with the following command:

COMMAND: curl −X DELETE http://localhost:5553/bh/inbound/4097

For every GET command, a user can find additional information in the
return header and the HTTP status code. (option -v can be used to increase
verbosity).

The following example command issues a call for requesting all the black-
holing rules:

COMMAND: curl −vX GET http://localhost:5553/bh/

OUTPUT:

< HTTP/1.0 200 OK

< Content−location: /bh/inbound

In addition, this command returns all the blackholing flow rules in the
JSON format.

The following example command requests the inbound blackholing rules:

COMMAND: curl −vX GET http://localhost:5553/bh/inbound/

OUTPUT:

< HTTP/1.0 200 OK

< Content−location: /bh/inbound/4097

In addition, it returns the inbound blackholing flow rules in the JSON
format.

4 Summary

In this report, we described the implemented ENDEAVOUR SDN architec-
ture. We presented the project implementation in terms of code location,
contents, and development process. We complemented the use cases videos
introduced in Deliverables 4.4 and 4.5 with a complete tutorial-style work-
flow documentation. This demonstrates the ENDEAVOUR SDN architec-
ture prototype and showcases its ability to support a range of use cases by
supporting programming of fine-grained SDN policies in the IXP fabric.

H2020-ICT-2014-1 Project No. 644960 23

WP2 / D2.3 ENDEAVOUR Version 0.9

5 Acronyms

SDN Software Defined Networking

BGP Border Gateway Protocol

IXP Internet eXchange Point

IP Internet Protocol

OSPF Open Shortest Path First

VM Virtual Machine

TCP Transport Control Protocol

UDP User Datagram Protocol

ARP Address Resolution Protocol

API Application Programming Interface

MAC Media Access Control

REST REpresentational State Transfer

HTTP HyperText Transfer Protocol

REST Representational State Transfer

JSON JavaScript Object Notation

iSDX Industrial Software Defined eXchange

References

[1] Kanban board. https://en.wikipedia.org/wiki/Kanban_board.

6 Acknowledgement

We would like to acknowledge Yazmin Alanis and Aaron K. Kim from the
Noun Project for the Router and Mac Book Air images used in Figure 1,
respectively.

H2020-ICT-2014-1 Project No. 644960 24

https://en.wikipedia.org/wiki/Kanban_board

	Introduction
	Overview of the Implementation
	Git repositories
	Development organization
	Code Review
	Tests
	Virtual Machine Development

	Demonstration of the SDN architecture
	Getting started
	Emulation environment
	Network topology and BGP/iSDX configuration
	SDN fine-grained policy specification
	Configuring the setup
	Testing the setup
	Testing the SDN policies
	Check the ARP tables
	Check the content of the OpenFlow tables
	Dump of edge-1 switch table
	Dump of core-1 switch table

	Example API: Blackholing REST API

	Summary
	Acronyms
	Acknowledgement

