
Catch It If You Can: Real-Time Network Anomaly
Detection With Low False Alarm Rates

Georgios Kathareios, Andreea Anghel, Ákos Máté, Rolf Clauberg, Mitch Gusat
IBM Research, Zürich

{ios, aan, kos, cla, mig}@zurich.ibm.com

Abstract—Unsupervised anomaly detection (AD) has shown
promise against the frequently new cyberattacks. But, as anoma-
lies are not always malicious, such systems generate prodigious
false alarm rates. The resulting manual validation workload often
overwhelms the IT operators: it slows down the system reaction
by orders of magnitude and ultimately thwarts its applicability.
Therefore, we propose a real-time network AD system that
reduces the manual workload by coupling 2 learning stages. The
first stage performs adaptive unsupervised AD using a shallow
autoencoder. The second stage uses a custom nearest-neighbor
classifier to filter the false positives by modeling the manual
classification. We implement a prototype for 10-50Gbps speeds
and evaluate it with traffic from a national network operator: we
achieve 98.5% true and 1.3% false positive rates, while reducing
the human intervention rate by 5x.

Keywords—Security, online, anomaly detection, neural nets.

I. INTRODUCTION

There are two prevalent approaches in designing intrusion and
anomaly detection (AD) systems: signature- and behavioral-
based. Signature-based detection relies on the existence of
a collection of known attack signatures which gets updated
every time a new attack is found. The detection is performed
by checking if the signature of suspicious traffic matches a
signature in the available collection. While such systems excel
in detecting known attacks, they generally fail to detect new
malware.

Behavioral-based detection is useful in defending against
novel malicious behaviors, for which signatures might not be
available. This detection relies on machine learning to create
profiles for the normal network traffic behaviors. The profiles
are used to detect anomalies, i.e., traffic with a behavior
that diverges significantly from the norm. A merit of this
approach is that it can operate without prior knowledge or
traffic assumptions, often being unsupervised in nature.

However, there are multiple challenges that purely unsu-
pervised, behavioral-based network AD mechanisms have to
face [1], [2]. The most important is their high false positive
rate. As the AD is unsupervised, it will identify anomalies in
any traffic that is sufficiently far from normal. And yet not
all the anomalous traffic is malicious or harmful; i.e., also
the benign traffic is widely diverse and may often diverge
from the norm. Practically today a completely unsupervised
detector cannot be trusted to work autonomously - its results
may need to be examined by a human operator before any
action is taken [3]. This can significantly overload the human
component of the network management infrastructure. As
such, it is common for network operators to lose their trust in

an AD system that creates a high rate of false positives, i.e., a
system that increases their workload and elicits unproductive
activities.

A second challenge is the fact that attacks may be highly
volatile and long-lasting. Window-based markovian meth-
ods [3], [4], [5], despite being highly adaptive, encounter
a paradox during long-lasting events that also dominate the
traffic, e.g., Denial-of-Service (DoS) attacks: Within some
time windows the detector perceives the dominant attack traffic
as normal, and the rest (i.e., benign traffic) as anomalous.
Hence, there is a need for detection models that can learn
the long-term characteristics of the network, but also adapt to
new malicious behavior.

The main contributions made in this paper are:
1) The design and test of a network AD system that can

operate on streams of both encrypted and non-encrypted
network packets. Instead of simply reporting the detected
anomalies, our system automatically classifies the majority
of them as harmful or non-harmful, with only minimal
human intervention.

2) The novel combination of a behavioral-based, unsupervised
AD first stage with a signature-based, supervised second
stage, which reduces the operator’s workload.

3) The design and tuning of a real-time scalable two-stage
pipeline (Fig. 1). The first stage uses an autoencoder neural
network model, while the second stage uses a nearest-
neighbor classifier model. Both stages are custom designed
for the next generation datacenter networks. We present
below the algorithmic design, implementation and tuning
of these particular models.

Our objective is to detect the traffic volumetrics outliers
that are strong indicators of attacks (flood attempts, scanning
attacks, etc.) or miss-configured equipment. The combination
of both unsupervised and supervised stages guarantees that:
(a) we detect the novel potentially harmful traffic that has
not been previously encountered, and, (b) we reduce the need
for manual examination of anomalous traffic by automatically
filtering new anomalies based on the previously identified false
positives. We address the network data variability by imple-
menting the AD pipeline in a way that simultaneously: (1)
adapts to changes in traffic behavior through online learning,
and, (2) retains memory of past behaviors, in contrast to the
prevailing markovian approaches.

The rest of the paper is structured as follows. In Section II
we describe the data pre-processing stage of our AD system.
In Sections III and IV we present the two main stages of

Training
data

Inference
Real-time

Training
Best-effort

Autoencoder

Parameter
update

Anomaly
extraction

Query
nearest

neighbors

ClassificationMarked data
points (Q)

Create
alerts

Alerts

Sample

Nearest-Neighbor Classifier

Stream of
packets from
the network

Stage 1: Unsupervised anomaly detection Stage 2: Expert validation and filtering

Packet
preprocessing

Expert

Fig. 1: Overview of the AD system.

the AD pipeline, respectively. We discuss the experimental
results using real-world data in Section V. The related work
is summarized in Section VI, after which we conclude in
Section VII.

II. DATA PRE-PROCESSING

As input we consider streams of raw packets originating
directly from a network link. Due to the ubiquity of end-
to-end encryption in today’s communications, we do not use
Deep Packet Inspection, but instead base the detection only
on (a) the information included in the Layer 2 to 4 headers of
the packets and (b) metrics of the network flows themselves
(e.g., packets per second rate).

During pre-processing, for each traffic source s we create
per-source flow aggregations as the sets of all packets that
originate from s and have a timestamp within consecutive,
non-overlapping time intervals of length ∆t. ∆t is the user-
defined aggregation interval, with a default value of 1 sec. For
each flow aggregation we then define a data point, a vector
of n features computed over it. The features are any metrics
that can be extracted from the flow aggregation, categorized as:
(a) protocol-specific, e.g., the number of packets with the TCP
SYN flag raised, (b) communication-pairs-specific, e.g., ratio
of destination-to-source ports, (c) packet-specific, e.g., total
number of packets and total bytes in the flow aggregation.
For all features that represent counters of packets with a
specific property, we also introduce features that represent the
ratio of this kind of packets to the total number of packets
in the aggregation. The features are normalized in an online
manner using their respective exponentially weighted means
and standard deviations, and are mapped to the range (−1,1)
with a hyperbolic tangent function. We denote as xi the i-th
normalized data point and as xi,j its j-th feature. The time-
series generated from pre-processing the input is:
X = (x1,x2, . . .) = ((x1,1 . . . x1,n) , (x2,1 . . . x2,n) . . .) (1)

III. STAGE 1: UNSUPERVISED ANOMALY DETECTION

The goal of the first stage of the pipeline is to assign to each
data point xi ∈ X an anomaly score a(xi): a scalar value that
represents the degree to which the data point diverges from
the normal behavior. We use the reconstruction error of an
autoencoder as an approximation of the anomaly scores.

We selected the autoencoder neural network for a number
of merits it presents over other methods. The main advantage

of using neural networks is that no assumptions on the
distribution of the input data are necessary, as the model is able
to discover the most relevant features by itself. Thus, compared
to clustering, autoencoders do not depend on the notions
of distance or density in the input data. Also, autoencoders
that use non-linear encoding and decoding functions have
the capacity to learn a non-linear generalization of vanilla
PCA [6], and can thus model more complex behaviors. Kernel-
based PCA [7], [8] could address the linearity limitations of
vanilla PCA. However, as in any kernel-based methods, the
selection of the kernel highly depends on the distribution of the
input data, which in our case is unknown and non-stationary.

An autoencoder with parameters θ is a feed-forward neural
network that implements an encoding (fθ) and a decoding (gθ)
function. Given an input data point xi, the autoencoder maps
it to a code ci and then outputs yi:

ci = fθ(xi), yi = gθ(ci) = gθ(fθ(xi)) (2)

The output yi is the reconstruction of xi according to ci and θ.
Such a network can be trained so as to minimize the difference
of the input xi and the output yi in order to create accurate
reconstructions. Therefore, the training phase tries to estimate
the set of parameters θ̂ that minimize the mean squared error
over some subset Xb of the set of normalized data points:

θ̂ = arg min
θ

 1

|Xb|
∑

xi∈Xb

‖gθ(fθ(xi))− xi‖2
 (3)

In order for the autoencoder to model the inherent character-
istics of normal traffic behavior, we design it to be under-
complete. We restrict the dimension of the code ci to be less
than n, forcing the model to perform dimensionality reduction
on the input [6]. In the opposite case, the autoencoder would
learn the identity function and would provide no interesting
information. Learning an undercomplete representation forces
the autoencoder to capture the most salient features of the
training data, which, in the context of network traffic, is the
form of the traffic most commonly encountered. Thus, the
model will be able to accurately reconstruct data points that
are close to the norm, and will have a high reconstruction error
on anomalous data points. We take advantage of this property
and calculate the anomaly score as the reconstruction error:

a(xi) = ||gθ̂

(
fθ̂ (xi)

)
− xi||2 (4)

Algorithm 1 Batch selection for some t, a, b, c

1: k ← 0
2: Xb ← {}
3: for i ∈ [0,b) do
4: Xb ← Xb ∪ {x(t−a(k+1)), . . . ,xt−ak}
5: k ← k + 1 + (i ÷ c) . Integer division
6: return Xb

It is expected that attacks can appear in a very sudden
manner. Therefore, the anomaly score for each data point
must be computed in near real-time. To do so, we separate
the slower training from the faster score inference in two
different instances of the model that run in parallel. The first
instance is used for training and uses error backpropagation
and gradient-based learning (e.g., Adagrad [10]). Every time
θ is updated after the error propagation of a single batch, θ is
communicated to the second instance of the model. There,
θ is used for real-time inference on the input time series
until the next update. The updates of the model parameters
essentially adapt the view of the model on what is considered
normal traffic. As we do not expect the notion of normal to
change much over time, there is no need for model updates
after each data point. Instead, by using an update interval of
a few seconds, we remove the slow training from the critical
path of the pipeline, without any hindrance to the model in
detecting novel anomalies in real time.

The size of each training batch Xb and the points it contains
affect (a) the rate of parameter updates and (b) how fast the
model adapts to more recent input. A simple yet efficient way
to create the batches that worked well for us involves grouping
the points in blocks of size a. We use batches with size equal
to b blocks (a · b data points). The batch is calculated with the
heuristic shown in Algorithm 1, where xt is the most recent
data point and c is some non-negative integer. This heuristic
essentially adds to the batch a sample of data points from a
large range1 but with a distribution skewed towards xt. The
parameters a and b control the batch size and together with
c they control how much past information is included in the
batch. Thus, each update of θ adapts the model to the newest
data points, but retains characteristics of past data points.

As final step of the first stage, the anomaly scores are
normalized in a manner similar to the data point features
and the anomalies are extracted. The anomaly extraction step
classifies as anomalies the data points with normalized scores
above a threshold Ω, creating the time series A of anomalous
points:

A = (. . . ,xi, . . .) ,∀xi ∈ X where a′(xi) > Ω (5)

where a′(xi) is the normalized value of a(xi).

IV. STAGE 2: SUPERVISED ANOMALY CLASSIFICATION

Unsupervised AD cannot operate autonomously because not
all anomalies constitute malicious behavior. In such systems

1The range can be calculated as :
(
x ab

2 (b
c
+1), . . . ,xt

)
.

the results have to be examined and validated by an expert
before an action is taken. For the second stage of the pipeline,
we create a model based on the decisions of the expert on
a small sample of A. The model then accurately decides on
behalf of the expert on the majority of the data points. This
partial automation (1) reduces the number of alerts the expert
receives, and, therefore, the number of false positives that need
to be validated, and, (2) allows the system to ingest a higher
rate of incoming data points, as the bottleneck of manual
validation is greatly reduced.

We assume that the expert has the ability to perform binary
classification for each data point in A based on the values
of the features xi and possibly the corresponding anomaly
score a′(xi). The expert performs the following mapping:

fE : A→ {threat, non− threat} (6)

In order to avoid the high cost of missclassification, for the
model we add a third possible label. This way, the data points
for which there is a high degree of uncertainty can be classified
neither as threat, nor as non− threat. The model thus
performs the following mapping:

fM : A→ {threat, non− threat, don′t know} (7)

On the one hand, fM must produce the same classification as
the expert would as often as possible. On the other hand, when
there is a high degree of uncertainty, the label don′t know is
preferred over missclassifying.

For modeling the classification we use a nearest-neighbor
classifier (NNC). As we expect a large degree of data locality
in the labeled data points, e.g. points that are part of the
same attack would be very similar, the selection of distance-
based models like the NNC follows naturally. A threshold-
based nearest-neighbor classifier (tNNC) is used instead of
a k-nearest-neighbor classifier because we need the system to
consider all neighboring anomalies instead of just the k nearest
ones.

The classification procedure takes place as follows. First, the
expert is presented with A. However, due to the potentially
high rate of the time series, the expert can only process
anomalies by sampling A. The time series of anomalies that is
created by sampling is denoted by s(A). Next, each anomalous
data point a of s(A) is classified by the expert, and stored
along with its label fE(a) in a FIFO queue Q with maximum
size |Q|max. Based on the current state of Q, the tNNC will
first calculate for each anomaly a ∈ A:

NQ
T (a) = {q, q ∈ Q and d(a,q) < T} (8)

which is the set of anomalies in Q within the T -neighborhood
of a, for some distance metric d (e.g., Euclidian) and thresh-
old T . It will also measure the number of threat and non-
threat neighbors in NQ

T (a), tQT (a) and ntQT (a), respectively.
The classification is then computed as follows:

fM (a) =


threat iff tQT (a)

|NQ
T (a)|

> C

non− threat iff ntQT (a)

|NQ
T (a)|

> C

don′t know else

(9)

where C is a threshold that controls the confidence that the
tNNC needs before labeling with don′t know.

Overall, by introducing the second stage of the pipeline the
expert only needs to process the sample of anomalies plus
the anomalies that the tNNC cannot classify. Therefore, with
appropriate values for the s(A) rate, |Q|max and C, we can
tune the accuracy of the tNNC so that the rate of anomalies
that need to be processed by the expert becomes much lower
than the rate of all the identified anomalies that would need
to be processed otherwise.

V. EXPERIMENTAL RESULTS

The AD pipeline was tested on real-world data from the
network of the National Information Infrastructure Develop-
ment Institute (NIIFI) of Hungary. Our data consists of packet
captures from a 10 Gbps link transferring general Internet
traffic. The capture covers 3.5 hours of traffic and corresponds
to a time series X of 59,750,000 data points. The capture
also includes a small-scale UDP flood attack, during which,
42 external sources attempt to flood a specific destination in
the network, by sending high rates of minimally-sized UDP
datagrams.

Besides the flood attack, within the same data, the detector
identified a number of anomalies that had not been previously
detected by the network operators. A number of them showed
malicious behavior (see Table I).

A. Evaluation of Stage 1

For our experiments, we used input vectors with n = 27
features, and a 5-layer autoencoder, with layer sizes
of 27, 20, 10, 20, and 27. The neural network uses the hy-
perbolic tangent as the activation function and batch normal-
ization [11]. As the model is trained on data streams and not
on a static dataset, there is no danger of overfitting, thus no
regularization is required.

For training, we used batches of 2.5M data points
(a = 50000, b = 50, c = 10 in Alg. 1). Each iteration of
the parameter update takes 8.1 seconds when training takes
place in the GPU and 20.5 seconds when performed on the
CPU. Fig. 2 shows the mean train error and test error as the
model parameters are updated with each batch. As test error
for batch i we calculate the mean reconstruction error for all
data points that are processed between the i-th and i + 1-th
parameter updates. As shown, after about 50 parameter updates
has learned an initial representation of the normal traffic and
from that point onward it is able to adapt and keep the low
level of test error.

Fig. 3 shows the normalized anomaly scores a′(xi) for all
data points in a single block. The vast majority of anomaly
scores are assigned small values, while the spikes in the figure
denote the anomalies included in the block. By varying the
threshold value Ω, the amount of data points that are classified
as anomalies, and subsequently the number of traffic sources
that are detected as anomalous, vary accordingly (see Table II).

To evaluate the correctness of the autoencoder detection, we
compared the results of the first stage of the pipeline with an

TABLE I: Anomalies manually identified after stage 1, Ω = 7.

id Anomaly type
% of

anomalous
sources

1 High percentage of packets with SYN flag (> 60%) 72%
2 Low ratio of destination to source ports (< 1 : 4) 59%
3 High number of destination addresses (> 100) 49.9%
4 Presence of fragmented packets 31.1%
5 High percentage of packets with PSH flag (> 40%) 10.3%
6 High percentage of packets with RST flag (> 30%) 9.3%
7 High percentage of ICMP packets (> 60%) 3.9%
8 High number of destination ports (> 20) 2.5%
9 High percentage of ICMP echo requests (> 60%) 1.2%
10 Sources of the UDP flood 0.5%
11 Nothing of the above 0.3%

TABLE II: Number of anomalous data points and sources (and
corresponding % of the total) with different Ω values.

Ω
Num. of anomalous

sources
Num. of anomalous

data points
2 23356 (1.01%) 498303 (0.83%)
3 16211 (0.70%) 290933 (0.49%)
5 9520 (0.41%) 170919 (0.29%)
7 6976 (0.30%) 117561 (0.20%)

offline PCA-based outlier detection method [12]. For this we
considered as input a matrix of the total number of data points.
Each feature was mean subtracted and normalized by dividing
it by the standard deviation. Using PCA, we calculated the
principal components vj and the associated variance λj of
each component. As anomaly score we used the Hotelling’s
T 2 score [12] of each data point xi:

T 2(xi) =

n∑
j=1

(
|xi · vj |
λi

)2

(10)

These anomaly scores follow an F-distribution and we classify
the points that belong to some top percentile as anomalies.

Fig. 4 shows for each of the two methods, how many of
the anomalies they identify are also identified by the other
method. For Ω = 5, almost all the anomalies identified by the
autoencoder belong in the top 5% of PCA results. Conversely,
92% of the scores with the highest 1% T 2 scores are identified
by the autoencoder with Ω = 3. Thus, the autoencoder-based
streaming methodology and the PCA-based offline method
assign high scores predominantly to the same data points but
sometimes rank them differently, i.e., place them in different
top percentiles.

To quantify the extent to which the first stage produces
false positives, we further classified the anomalous sources
manually for the case of Ω = 7. We show these results in
Table I. Anomaly types with ids 1, 2, 4, 6, 7, 9, and 10 can be
indicators of malicious traffic, but the data points of anomaly
type 3 may belong to application servers. Furthermore, from
the number of anomalous sources of Table II that are identified
over the span of the 3.5 hours of traffic, we can see that
on average, 33 to 111 anomalous sources are detected per
minute, depending on the value of Ω. This means that real-
time manual classification would be very challenging for the
human operator. These observations show why there is a need
to deploy the second stage of the pipeline.

10-5

10-4

10-3

10-2

10-1

100

 0 200 400 600 800 1000 1200

M
e
a
n
 r

e
co

n
st

ru
ct

io
n
 e

rr
o
r

Training batch

Train loss
Test loss

Fig. 2: Autoencoder learning curves.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 10000 20000 30000 40000 50000

N
o
rm

a
liz

e
d
 a

n
o
m

a
ly

 s
co

re

Datapoint index within block

Fig. 3: Anomaly scores (single block).

 0

 0.2

 0.4

 0.6

 0.8

 1

2 3 5 10 20P
e
rc

e
n
ta

g
e
 i
n
cl

u
d
e
d

Ω

% of autoencoder anomalies
 included in the top 5%

 of PCA scores

3 2 1 0.5 0.1
Top i-th percentile of T2 scores

% of PCA anomalies included
 in autoencoder results

 for Ω = 3

Fig. 4: Offline PCA vs 1st stage.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0.6 0.7 0.8 0.9 1

P
e
rc

e
n
ta

g
e

Classification potency

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.6 0.7 0.8 0.9 1

Value of confidence threshold C

TPR

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.6 0.7 0.8 0.9 1

FPR

Sample
1%
2%
5%

Fig. 5: Classification potency, true and false positive rates for
the tNNC with various sample sizes and values for C.

B. Evaluation of Stage 2

For our experiments, we set |Q|max = 2000. The amount
of available captured data did not allow for tests with larger
queue sizes, as the queue would never be full. As n also has
a rather low value (27), we opted for a simple exhaustive
nearest-neighbor query algorithm. The algorithm compares the
distance of the queried point with all points in Q and returns
the ones that have a distance within T = 0.5. The expert
analyzes a sample of the time series of the anomalies with
sampling rates that ensure that s(A) has a rate equal to 1%,
2% or 5% of the rate of A.

We evaluate the performance of the tNNC using three
metrics: classification potency, true positive rate (TPR), and
false positive rate (FPR). We define classification potency
as the percentage of data points that the tNNC classifies as
threat or non− threat. TPR and FPR are calculated for the
same data points. Fig. 5 shows the results for multiple values
of the confidence threshold C and Ω = 7. As expected, with
higher C values, the classification potency drops, as there are
more cases where the model does not find enough neighbors
of the same label with which to classify a data point. For
the same reason, TPR increases with higher values of C, as
the model only classifies when it has high confidence. FPR
generally decreases for the same reason, except for sample size
1%, where the data points in Q are not enough to accurately
model the behavior of the expert. In general, the results show
that all three metrics improve as the sample size increases.

In Fig. 6 we show the percentage of anomalies that need
classification with and without the second stage. For the

later case, these anomalies correspond to the sum of the
sample s(A) and don′t know labels. The results show that
as the size of s(A) increases, the expert needs to classify a
smaller percentage of anomalies, compared to what would be
required if the second stage was not present. Also, with a 5%
sample, the false alarms that the expert processes falls from
33.7% to just 8.9% of all anomalies. Therefore, larger sample
sizes only benefit the overall system, as with less effort from
the expert, stage 2 provides better TPR and FPR.

All in all, these results showcase the extensive benefits of
adding the second stage of the pipeline. With an indicative
sample size of 5% and a C value of 0.9, the amount of data
points that the expert needs to validate drops to just 20.2%
of the original size, while we can still accurately model the
behavior of the expert with 98.5% TPR and only 1.3% FPR.

C. Timing measurements

A major concern in the design of any AD system is the
execution performance, because the system should be able to
ingest information from high-speed network links with large
number of traffic sources. Table III presents the maximum
processing performance of each of the pipeline stages in terms
of data points per second. To put things into perspective, the
traffic we examined corresponds on average to approximately
4,700 data points generated per second. Therefore, the pipeline
has the capacity to ingest a link with up to 4× the rate, or
process in real time data points that correspond to a flow
aggregation of 0.25 seconds.

As a final experiment, Fig. 7 shows the detection lag for
the 42 sources of the UDP flood attack for multiple Ω values.
Each point in the figure denotes the percentage of all attackers
detected with the corresponding lag. The right-most point
of each line corresponds to the total percentage of attackers
detected with that Ω value. The results show that most of the
attackers are already detected within 1 second, which is equal
to ∆t, the minimum detection latency possible. For Ω values
3, 5, and 7, all detected attackers are found within just a few
seconds from the beginning of the attack. The 10% of attackers
that can only be identified when Ω equals 2, corresponds to
attackers that have significantly lower rates and are comparable
to normal traffic. Thus, on the one hand, they are more difficult
to detect, but on the other hand, they do not have a noticeable
effect on the network.

TABLE III: Processing speed per stage

Stage
Data points
per second

Pre- 42909 (before the attack)
processing 26670 (during the attack)
Stage 1 19588
Stage 2 29031

 0

 0.2

 0.4

 0.6

 0.8

 1

No second
 stage

1%
 sample

2%
 sample

5%
 sample

P
e
rc

e
n
ta

g
e
 o

f
a
n
o
m

a
lie

s Threats
Non-threats

Total

6
6

.3
%

1
3

.3
%

1
1

.1
%

1
1

.2
%

3
3

.7
%

1
2

.4
%

1
0

.3
%

8
.9

%

1
0

0
.0

%

2
5

.7
%

2
1

.3
%

2
0

.2
%

Fig. 6: % of anomalous data points that
need expert classification with and with-
out the 2nd stage (C = 0.9).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

P
e
rc

e
n
ta

g
e
 o

f
 a

tt
a
ck

 s
o
u
rc

e
s

Detection lag (seconds)

Ω
2
3
5
7

10
15

Fig. 7: Time interval between the start of
the attack sources’ transmission and their
detection for the 42 UDP flood sources.

VI. RELATED WORK

Many unsupervised network AD methods rely on clustering
algorithms [3], [4], [15] or linear PCA [16], [17], [5]. In
general, clustering-based methods require making assumptions
on the distribution of the input data in order to select optimal
distance or density metrics, which are generally unknown or
highly-variable in the context of network traffic. Non-linear
PCA suffers from the same drawback in kernel selection, and
linear PCA may not be expressive enough at times. Instead
we opted for a non-linear model (autoencoder) that can model
more complex traffic behaviors than vanilla PCA. Also with
a neural network, there is no need of prior assumptions on
the traffic, as the model is able to discover the most relevant
features by itself. Autoencoders have also been used in the
past for network intrusion detection [18], [19].

The aforementioned methods do not address the problems
of purely unsupervised detection, nor the further examina-
tion of results that is needed. In contrast, Veeramachaneni
et al. [20] combine unsupervised and supervised models to
address this problem, but focus on web and firewall logs, while
our approach focuses on low-level network packet streams.
Furthermore, Ippoliti and Zhou [21] also use operator feedback
to update their one-class SVM-based AD model. To adapt to
new traffic behaviors, their model needs to be updated using
operator feedback. In contrast, our first stage, which performs
the bulk of the anomaly identification, automatically adapts to
new traffic without any need for human intervention.

VII. CONCLUSION

To address the important problem of high false alarm rates
commonly encountered in unsupervised systems, we proposed
an adaptive, online network AD system targeted to today’s
high-speed networks. Our system can identify novel malicious
traffic similarly to purely unsupervised methods, but requires
significantly less manual result examination. The system com-
bines an unsupervised stage that detects novel anomalous
behavior, with a supervised stage that models the expert
knowledge to filter out false alarms, based on an autoencoder
and a nearest-neighbor classifier, respectively. Our experiments
on real-world traffic show that the pipeline is able to detect
the same anomalies as an offline anomaly detector despite its
online mode of operation. Furthermore, it reduces the need
for manual anomaly examination by almost 80%, while being
able to automatically classify anomalous traffic as malicious
with 98.5% true and 1.3% false positive rates.

ACKNOWLEDGMENT

We would like to thank Pál Varga and Péter Orosz for their
help and feedback. This research is partly supported by the
EU H2020 research and innovation programme under the grant
agreement 644960.

REFERENCES

[1] R. Sommer et al., “Outside the closed world: On using machine learning
for network intrusion detection,” in Security and Privacy (SP), 2010
IEEE Symposium on, 2010, pp. 305–316.

[2] C. Gates et al., “Challenging the anomaly detection paradigm: a provoca-
tive discussion,” in Proceedings of the 2006 workshop on New security
paradigms. ACM, 2006, pp. 21–29.

[3] J. Dromard et al., “Online and scalable unsupervised network anomaly
detection method,” IEEE Transactions on Network and Service Manage-
ment, vol. 14, no. 1, pp. 34–47, 2017.

[4] P. Casas et al., “Unada: Unsupervised network anomaly detection using
sub-space outliers ranking,” Networking 2011, pp. 40–51, 2011.

[5] Y. Liu et al., “Sketch-based streaming pca algorithm for network-wide
traffic anomaly detection,” in Distributed Computing Systems (ICDCS),
IEEE 30th International Conference on, 2010, pp. 807–816.

[6] I. Goodfellow et al., Deep learning. MIT Press, 2016.
[7] M. E. Tipping, “Sparse kernel principal component analysis,” in Ad-

vances in neural information processing systems, 2001, pp. 633–639.
[8] M. Ghashami et al., “Streaming kernel principal component analysis,”

in Artificial Intelligence and Statistics, 2016, pp. 1365–1374.
[9] Y. A. LeCun et al., “Efficient backprop,” in Neural networks: Tricks of

the trade. Springer, 2012, pp. 9–48.
[10] J. Duchi et al., “Adaptive subgradient methods for online learning and

stochastic optimization,” Journal of Machine Learning Research, vol. 12,
no. Jul, pp. 2121–2159, 2011.

[11] S. Ioffe et al., “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” preprint arXiv:1502.03167, 2015.

[12] C. Aggarwal, “Outlier analysis,” in Data mining. Springer’15, pp. 237–.
[13] H. Samet, Foundations of multidimensional and metric data structures.

Morgan Kaufmann, 2006.
[14] M. Datar et al., “Locality-sensitive hashing scheme based on p-stable

distributions,” in Proceedings of the 28th ACM SoCG’04, pp. 253–262.
[15] A. Lakhina et al., “Mining anomalies using traffic feature distributions,”

in ACM SIGCOMM’05, vol. 35, no. 4, pp. 217–228.
[16] ——, “Diagnosing network-wide traffic anomalies,” in ACM SIG-

COMM’04, vol. 34, no. 4, pp. 219–230.
[17] L. Huang et al., “In-network PCA and anomaly detection,” in Advances

in Neural Information Processing Systems, 2007, pp. 617–624.
[18] S. Hawkins et al., “Outlier detection using replicator neural networks,”

in DaWaK, vol. 2454. Springer, 2002, pp. 170–180.
[19] G. Williams et al., “A comparative study of RNN for outlier detection

in data mining,” in IEEE ICDM’02, pp. 709–.
[20] K. Veeramachaneni et al., “AIˆ 2: training a big data machine to

defend,” in IEEE International Conference on Big Data Security on
Cloud (BigDataSecurity). IEEE, 2016, pp. 49–54.

[21] D. Ippoliti et al., “Online adaptive anomaly detection for augmented net-
work flows,” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol. 11, no. 3, p. 17, 2016.

