
A reactive resource defragmentation method for
virtual links mapping in software-defined networks

A. F. Simo Tegueu∗†, Slim Abdellatif∗†, Thierry Villemur ∗‡, and Pascal Berthou∗§
∗CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France

†Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
‡Univ de Toulouse, UT2J, LAAS, F-31100 Toulouse, France
§Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

Abstract—Assigning network resources to Virtual Links (VLs)
efficiently and on-demand is a challenging problem for any
network virtualization solution. Known as the Virtual Link
Mapping (VLM) problem, its objective is to compute the appro-
priate network paths with the required network resources that
meet the quality of service expectations of arriving VLs while
spreading the load over all nodes to maximise the admissibility
of forthcoming VLs. Despite the efficiency of existing VL mapping
algorithms, when resources are allocated and released over time
due to the arrivals and departures of VLs, the network inevitably
drift into a fragmented state (with nodes with very different
loads) often causing a VLs request rejection that could have been
avoided with a different resource allocation. In practice, defrag-
mentation algorithms are used in complement to VL mapping
algorithms to proactively or reactively (on the event of a VLs
request refusal) trigger some VLs reallocation (or migration). In
this paper, we propose an Integer-Linear program (ILP) based
reactive defragmentation and VLs mapping algorithm for an
SDN/OpenFlow network. In addition to selecting the VLs that
should be migrated to reduce network defragmentation, our
algorithm also computes the paths (and the associated resources)
that support the previously rejected VLs. Our solution was
evaluated on a real network topology and the experiments showed
that our proposal outperforms existing approaches from the
literature by about 12% in terms of acceptance rate with a gain
on migration costs around 40%.

I. INTRODUCTION

Network virtualization (NV) enables the co-existence of
multiple concurrent VNs over the same SN in an independent
and isolated way. It relies on algorithms commonly known as
Virtual Network Embedding (VNE) algorithms to efficiently
compute substrate resources for each hosted VNs. In this
problem, a VN is a logical network with some of its elements
(nodes and links) being virtual. A virtual node is an abstraction
of a network device that is often hosted on a single physical
node. The resources allocated to a virtual network device are
as diverse such as CPU, volatile memory, network interfaces,
storage, switching, etc. Similarly, a VL is an abstraction of a
network link that is instantiated on one or multiple physical
paths. It consumes transmission resources (i.e. physical links
bandwidth) as well as switching resources at each traversed
physical nodes. On-demand creation and adjustment of a VN
are non-trivial. They involve numerous configuration opera-
tions witch are needed to instantiate virtual nodes and deploy
their connecting VLs. Realizing these operations at hand is a
time-consuming task as well as error prone.

The emerging SDN paradigm has been recognized as a
powerful technology to overcome these problems, by enabling
dynamic and automated configurations for a fast reliable
and scalable deployment. While SDN advantages have been
already highlighted, its use has also introduced some new
constraints, namely, the limited capacity of forwarding tables,
which is actually around a few thousands of entries [1] [2]
in commodity SDN-compliant devices. In an SDN based
virtualized environment, these switching resources are not only
requested by virtual nodes, but they are also required to embed
VLs. In fact, a number of flow rules have to be installed on
auxiliary nodes i.e., nodes that are not part of the VN request,
but are involved to set up the physical paths that host the
VLs. These flow rules are mainly installed in network devices
flow tables but may also be installed in their group tables
when embedding point-to-multipoint VLs or when enabling
path splitting.
Independently from the efficiency and optimality of the

VL mapping algorithms, when resources are allocated and
released over time due to the arrivals and departures of
VLs, the network inevitably drift into a fragmented state
where nodes and links may have very different loads. Such
network resource fragmentation favors VLs request rejection
even though, in most situations, this rejection could have
been avoided with a different resource allocation. This is why
a defragmentation algorithm is usually used to complement
VL mapping algorithms to proactively or reactively (on the
event of a VLs request refusal) trigger some VLs reallocations
(or migrations). Their objective is to evenly spread the load
leading to a reduction of network resource fragmentation
and, as a consequence, an improved admissibility for forth
coming VLs requests. To the best of our knowledge, only
the work in [2] proposes a defragmentation algorithm for
SDN networks, to the extent that switching resources are
explicitly considered in addition to the bandwidth of links.
The algorithm relies on a proactive approach that selects and
triggers some VLs migrations when the load of some links
or nodes exceeds a pre-specified threshold. In this paper,
we propose a reactive Integer-Linear Program (ILP) based
defragmentation and mapping algorithm for SDN networks
that is triggered when a VLs request is rejected. The algorithm
jointly selects the most promising VL candidates to migrate
and, when possible, the resource allocations related to the

rejected request.
The remainder of this paper is organized as follows. In

Section II, we discuss existing SN re-allocation approaches. In
Section III, we describe the problem under study and explain
the proposed ILP, before presenting our algorithm of selection
in Section IV. Section V details the performance evaluation
and discusses the obtained results. Last, Section VI concludes
this paper.

II. RELATED WORK
VL mapping on an SDN infrastructure has been investigated

[3] and a handful solutions [4] [5] [6] have been proposed. In
general, these latter don’t consider the possibility to reconfig-
ure already mapped VLs while mapping new requests. This
would avoid resource fragmentation and hence improve the
admissibility of upcoming requests. However, many research
works address resource fragmentation [2] [7] [8] [9] [10] [11]
[12] [13] and propose in complement to VNE algorithms, a
strategy for SN resource re-optimization, increasing by the
way the embedding performance.
In general, these strategies are decomposed into three succes-
sive phases.
1) Controlling reconfiguration: As it is not conceivable to

apply reconfiguration at continuous time, the objective is to
determine when to trigger the process and at which conditions
reconfiguration will be effective in order to avoid intensive
SN instability, bandwidth overhead and eventual service dis-
ruption of reconfigured VNs. We distinguish two categories
of approaches according to the trigger mode: periodic [13]
[12] and event-based. This last category decomposes into
three subcategories: (1) reactively triggered on VN request
rejection; (2) proactively [2] [7] triggered by events like VN
departure and (3) hybrid which can be triggered when a VN
request embedding fails or/and on a VN expiration. Some
solutions [2] systematically reconfigure already mapped VNs
while others [13][10][7] condition the reconfiguration by the
level of congestion of substrate entities.
2) Selecting candidate virtual components: During this

phase, relevant virtual components (virtual links and/or nodes)
that are candidate for reconfiguration are selected. The number
of candidates is limited in order to limit the computation cost
and the reconfiguration duration. The selection depends on
many factors like the contribution of the virtual component on
the fragmented resources and the expected benefits in terms
of fragmentation reduction of a potential migration.
3) Remapping: At this last stage, virtual components previ-

ously selected are reallocated. We distinguish three dimensions
of classification of remapping methods. The first one includes
(1) integrated approaches [9] [8] that execute selecting and
remapping in a coordinated manner at the same time with
the aim of finding an optimal remapping solution while
minimizing service disruption; and (2) separated approaches
where selecting and remapping are performed independently.
This class includes interrelated approaches [14] requiring
specific information from the initial embedding strategy, and
portable approaches that are able to operate with any initial

TABLE I
CLASSIFICATION OF SN RESOURCE RE-OPTIMIZATION APPROACHES

Refs. Re-opt.
mode

Triggering
conditions

Component
to migrate

Considered
resources

Remapping
method

[2] Proactive N/A Virtual link Flow table
Bandwidth

Separated
Portable
Individual

[7] Proactive Link congestion Virtual node and
its attached VLs Bandwidth

Separated
Portable
Individual

[8] Reactive N/A Virtual node and link CPU
Bandwidth

Integrated
Portable
Simultaneous

[9] Reactive N/A Virtual node and link CPU
Bandwidth

Integrated
Portable
Simultaneous

[11] Reactive N/A Virtual node and link CPU
Bandwidth

Separated
Interrelated
Simultaneous

[10] Hybrid Link congestion Virtual node and
its attached VLs Bandwidth

Separated
Portable
Individual

[12] Periodic N/A Virtual link Bandwidth
Integrate
Portable
Simultaneous

[13] Periodic Link and node congestion Virtual topology CPU
Bandwidth

Separated
Portable
Individual

Our
approach Reactive N/A Virtual link Flow table

Bandwidth

Integrated
Portable
Simultaneous

embedding strategy. Finally, (3) the last dimension allows to
distinguish the approaches that are restrained to reallocate
virtual components individually, from those that treat many
components simultaneously for a further efficient resource
utilization.
Table I summarizes existing works and classifies the method

that we are proposing in this paper.

III. PROPOSED ALGORITHM

Algorithm 1 outlines the pseudo-code of the general
behaviour of our proposed algorithm. As explained above,
it is activated upon a VLs request rejection and then acts
as a defragmentation algorithm by selecting a set of VLs to
migrate (denoted as ζ and referred as “candidate VLs”) and
recomputing their allocations after including the previously
rejected VLs request that caused its activation. The first step
(line 5) selects the candidate VLs, followed by the release of
their assigned resources (line 6). The selection is based on a
heuristic algorithm presented in the next section. At the next
step (line 7), selected VLs are simultaneously remapped with
those composing the rejected request. Finally, if the VN is
successfully mapped, then the new allocations are committed,
else, the original allocations assigned to candidate VLs will
be reconsidered and the VN request is definitely rejected. It
is worth noting that in this latter scenario, no VLs migration
is applied. In fact, such a situation is typically preceded by
VLs requests that were successfully remapped with the help of
VLs migrations. From our observations, if there is a definitive
request rejection, the network is in an overload situation where
a defragmentation strategy is of no help.
The remainder of this section presents the method used

to compute the resource allocations of selected and initially
rejected VLs (line 7).

Algorithm 1: Reactive VLM considering migration
Input : G(V,E);K set of incoming VLs request; X set

of currently-mapped VLs; Fk ∀k ∈ X; θ; Nmax

1 begin
2 Initialize Success ←− false; ζ ←− ∅
3 Success ←− Allocate(G(V,E),K)
4 if (Success = false) then
5 ζ ←− Select VLs(G(V,E), X, Fk, θ, Nmax)
6 Revert currently assigned allocations to ζ
7 Success ←− Solve ILP(G(V,E),K, ζ)
8 if (Success) then
9 Commit new assigned allocations to ζ

10 else Rollback currently assigned allocations to ζ
11

A. Physical Network Model
The physical network is modeled by a bidirectional graph

G = (V,E) where V (|V |) is the set of physical nodes (SDN
switches) and E (|E| , E ⊆ V × V) the set of physical links
which operate in full-duplex mode. To each node i ∈ V is
associated a switching capacity Ui which is the maximum
number of entries (i.e. size limit) of its flow table. The
current size of node i flow table is denoted by U ′

i . Each link
(i, j), i, j ∈ V is weighted by its bandwidth Bij . Links are
assumed to exhibit the same characteristics in both directions,
i.e. Bij = Bji. The bandwidth that is currently assigned at
link (i, j) by already admitted VLs is denoted by B′

ij .

B. Virtual network request model
The incoming VN request consists of a set of K VLs. Each

VL k is characterised by:
• a source node sk ∈ V , and a set of destination nodes

Tk ⊆ V \{sk} (when |Tk| = 1, the VL is point-to-point,
otherwise it is point-to-multipoint);

• a bandwidth requirement of bk ∈ N∗

C. Initial allocations of VLs
The initial mapping of each candidate VL k ∈ ζ is a

substrate path, denoted as Fk, which consists of a set of
physical links and nodes. Fk(i, j) refers to the amount of
bandwidth used on link (i, j) ∈ Fk by the VL k. Likewise,
we denote by Lk(i) and Nk(i) respectively the number of
entries that are allocated at node i flow table and group
table to support VL k. These quantities are used during the
resolution process to revert/dis-embed (Algorithm 1 : line 6)
the allocations of these VLs. For each VL k ∈ ζ, we use the
binary Gk(i, j) to indicate if some resources are assigned to
k at the physical link (i, j).

D. Resource-related assignment variables
The output of our assignment problem is the set of routes

(with the bandwidth allocations at each supporting physical
link and the number of flow and group table entries at each

traversed node) that support each of the VLs that compose
the request as well as the VLs re-allocated. It is worth noting
that since VLs may be point-to-multipoint, it is likely that
resource allocations will be mutualised close to the source
and as we get closer to destinations, they will tend to be more
and more dedicated to specific destinations. As a consequence,
basic assignment variables are related to a specific destination
of a VL. In our model, we distinguish the following variables:

• f t
k(i, j) is an integer variable that represents the band-
width allocated at link (i, j) to the packets of VL k
that are flowing from the origin node sk to a destination
node t. More generally, fk(i, j) refers to the amount of
bandwidth used on link (i, j) by the VL k, whatever the
destination. It is set to the maximum of f t

k(i, j) for all
k ∈ (K ∪ ζ).

• lk(i) is an binary variable that indicates the switching
resources consumed by VL k at node i. It is expressed
as the number of entries that are installed in node i
flow table to support VL k with the assumption that all
entries consume the same amount of resources regardless
of the complexity of the match operation and the related
instructions to perform. In this work, we assume that each
VL consumes 1 flow table entry at each traversed node.
A node is traversed by a VL if at less one of its adjacent
physical link supports VL. Formally:

∀k ∈ K ∪ ζ, ∀i ∈ V,∀(i, j) ∈ E : gk(i, j) ≤ lk(i) (1)

∀k ∈ (K ∪ ζ),∀i ∈ V : lk(i) ≤
∑

j∈V
(i,j)∈E

gk(i, j) (2)

where gk(i, j) is an intermediate binary variable that indi-
cates if some bandwidth from link (i, j) is assigned to VL
k or not. It is derived from another set of more focused
intermediate variables gtk(i, j) that reflects whether the
flow of packets of VL k destined to t is supported by the
physical link (i, j) (i.e. gtk(i, j) = 0 if f t

k(i, j) = 0 and
gtk(i, j) = 1 otherwise).

• nk(i) is a binary variable indicating if a group table entry
is assigned to VL k at node i. A group table entry is
consumed by a VL at a node, if it is split (for multipath)
or duplicated (for multicast). In other words, if at less two
of its adjacent physical links support the VL. Formally
(equations 3 and 4):
∀k ∈ (K ∪ ζ),∀i ∈ V, ∀(i, j) ∈ E :

nk(i) ≤

⎛

⎝

∑

(i,j)∈E

gk(i, j)

⎞

⎠− gk(i, j) (3)

∀k ∈ (K ∪ ζ), ∀i ∈ V, ∀(i, j1) ̸= (i, j2) ∈ E :

gk(i, j1) + gk(i, j2)− 1 ≤ nk(i) (4)

• fmax which refers to maximum link utilization (when
considering all network links) after request acceptance.

• umax which similarly refers to maximum flow table
utilization (when considering all network nodes) after
request acceptance.

• zk is a binary variable that indicates if the VL k ∈ ζ has
been reallocated or not, regardless the complexity of the
configurations to apply for achieving path migration.

E. Problem Constraints
The constraints on bandwidth allocations are described here-

after in equations 5 to 11. Equation 5 reflects the linearisation
of the Max operator applied to variables f t

k(i, j) to get
fk(i, j). Equations 6 and 7 have a similar purpose and focus
respectively on fmax and umax which are minimized by the
objective function (as explained below).

∀k ∈ K ∪ ζ,∀(i, j) ∈ E, ∀t ∈ Tk : f t
k(i, j) ≤ fk(i, j) (5)

∀(i, j) ∈ E :
1

Bij
∗

⎛

⎝B′
ij +

∑

k∈K∪ζ

fk(i, j)

⎞

⎠ ≤ fmax (6)

∀i ∈ V :
1

Ui
∗

⎛

⎝U ′
i +

∑

k∈K∪ζ

lk(i)

⎞

⎠ ≤ umax (7)

Equation 8 ensures that the bandwidth assigned to each VL
k at link (i, j) does not exceed the remaining bandwidth.
Equation 9 is the usual flow conservation constraints.

∀(i, j) ∈ E :
∑

k∈K∪ζ

fk(i, j) ≤ Bij −B′
ij (8)

∀k ∈ K ∪ ζ, ∀t ∈ Tk, ∀i ∈ V :

∑

j∈Γ(i)

(f t
k(i, j)− f t

k(j, i)) =

⎧

⎪

⎨

⎪

⎩

bk if i = sk

−bk if i = t

0 else

(9)

Equation 10 is a channeling constraint between integer and
binary variables: fk(i, j) and gk(i, j). It also constrains the VL
k’s bandwidth assignment at a physical link to the requested
bandwidth bk. Equation 11 constrains the bandwidth that is
assigned to the flow of packets destined to a specific VL’s
end-point (or destination) within a range of values, in addition
to establishing a channeling constraints between binary and
integer variables. The inequalty on the right side ensures that
the bandwidth requirement of the VL is never exceeded. The
inequalty on the left side directs path-spliting and avoids
the multiplication of splits with low bandwidth allocations.
Indeed, if active, path-splitting is feasible only if the bandwidth
allocated to the splits respects a minimum threshold bmin

k . In
practice, bmin

k is a ratio of bk, bmin
k = PSratio ∗ bk with

PSratio ∈ [0, 1] (then, PSratio ≤ 0.5 when the path-splitting
is allowed, and PSratio = 1.0 when it is forbidden).

∀k ∈ K ∪ ζ, ∀(i, j) ∈ E :

gk(i, j) ≤ fk(i, j) and fk(i, j) ≤ bk ∗ gk(i, j) (10)

∀k ∈ K ∪ ζ, ∀(i, j) ∈ E :

bmin
k ∗ gtk(i, j) ≤ f t

k(i, j) and f t
k(i, j) ≤ bk ∗ gtk(i, j)

(11)

The constraints related to switching resources allocation is
given by inequalities 12 and 13. They simply ensure that

the total number of flow and group table entries assigned to
candidate VLs and to the VLs composing the request, don’t
exceed available nodes’ flow and group tables entries.

∀i ∈ V :
∑

k∈K∪ζ

lk(i) ≤ Ui − U ′
i (12)

∀i ∈ V :
∑

k∈K∪ζ

nk(i) ≤ Ni −N ′
i (13)

All the above cited constraints guarantee the simultaneous
embedding of the rejected VN request and the candidate
VLs. However, as our formulation aims to be sensitive to
the migration cost including service disruption experienced
by reconfigured VLs and also the induced overhead, for each
of candidate VL k ∈ ζ, we use binary variables zk that
indicate if the VL k is reallocated or not. They are used in
the objective function to minimize the migration cost. zk is
defined as follows. A VL k ∈ ζ is changed at a physical link
(i, j) if: (1) there was previously supported (Gk(i, j) = 1),
but it is no longer the case (gk(i, j) = 0), or (2) if it is newly
allocated at this physical link (Gk(i, j) = 0 and gk(i, j) = 1).
These changes can be detected by this logical expression:
Gk(i, j) ∗ gk(i, j) + Gk(i, j) ∗ gk(i, j). To detect the total
number of changes along the path, we have introduced an
intermediate integer expression denoted yk, defined as:

yk =
∑

(i,j)∈E

yk(i, j)

Where yk(i, j) is a linear expression defined as follows:
yk(i, j) = Gk(i, j) ∗ (1− gk(i, j)) + (1−Gk(i, j)) ∗ gk(i, j)
which is derived from the previous logical expression. In this
work, we also assume that any number of changes in the
original path of a VL is counted as only one reconfiguration
regardless of the number of physical links that are changed.
Then, the variable zk can be derived from yk like this:

∀k ∈ ζ : zk =

{

0, if yk = 0

1, if yk ≥ 1

As zk is a binary variable, the above equality can be linearly
represented as follows:

yk

2 ∗ |E|
≤ zk ≤ yk (14)

F. Objective function
The objective function aims at minimizing link and node

resource consumption but also at distributing the consumed re-
sources among nodes and links in order to reduce the creation
of bottlenecks while minimizing migration cost. Therefore,
the admissibility of forthcoming requests are improved, at
the same time, avoiding to frequently trigger reconfigurations.
As shown in expression 15, the objective function consists of
five components, each weighted with a parameter that controls
the impact of the component on the resolution process. The
first two concern bandwidth allocations and the next two are
their analogue for flow table entries allocations. Finally, the

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

ep
ta

nc
e

R
at

e

Arrival Rate

Nmax = 10
Nmax = 20
Nmax = 30

(a) Impact on Acceptance Ratio

 1000

 2000

 3000

 4000

 5000

 0.6 0.7 0.8 0.9 1
To

ta
l n

um
be

r o
f r

ec
on

fig
ur

at
io

ns
Arrival Rate

Nmax = 10
Nmax = 20
Nmax = 30

(b) Impact on Migration Cost

 0

 500

 1000

 1500

 2000

 2500

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
ve

ra
ge

 C
on

ve
rg

en
ce

 T
im

e
(s

)

Arrival Rate

Nmax = 10
Nmax = 20
Nmax = 30

(c) Impact on Solving Time

Fig. 1. Impact of parameter Nmax

last component concerns migration cost in terms of the total
number of reconfigured VLs.

minimize α1 ∗
1

|E|
∗

∑

(i,j)∈E

⎛

⎝

1

Bij
∗

⎛

⎝B′

ij +
∑

k∈K∪ζ

fk(i, j)

⎞

⎠

⎞

⎠+

α2 ∗ fmax+

β1 ∗
1

|V |
∗
∑

i∈V

⎛

⎝

1

Ui
∗

⎛

⎝U ′

i +
∑

k∈K∪ζ

lk(i)

⎞

⎠

⎞

⎠+

β2 ∗ umax + ρ ∗
∑

k∈ζ

zk (15)

IV. HEURISTIC ALGORITHM FOR VLS PRE-SELECTION
Even though all current VLs can be re-allocated, our exper-

iments show that only a portion of existing VLs is profitably
reallocated. In this section, we introduce a simple heuristic
algorithm to pre-select the VLs that will be include in the
process of reallocation. This reduces the size of the ILP
problem and hence makes it tractable for large networks.
Unlike some approaches proposing to consider all VLs from

the same VN that are mapped on θ-congested entities (A SN
node i and link (i, j) are considered to be θ-congested if U ′

i

Ui
≥

θ and B′

ij

Bij
≥ θ respectively), we propose to limit the number

of VLs to migrate to Nmax. Since our proposal operates with
no information on future requests, the principle relies on the
notion that we called “Minimum Spanning Set (MSS)”, which
is the subset of VLs with smallest cardinality, hosted by all
θ-congested entities. To build MSS, the algorithm iterates over
the set of VLs that are hosted by at less one θ-congested entity,
to select at each iteration, among the most popular/impacting
(in terms of number entities that it congests among those not
yet spanned). The MSS is built when all θ-congested entities
are covered. The VLs composing the MSS are selected, then a
new MSS is computed until the total number of selected VLs
reaches Nmax.

V. PERFORMANCE EVALUATION
We firstly introduce the simulation settings. Then, we show

the impact of some parameters, before presenting a compara-
tive analysis to existing solutions.

A. Simulation settings
1) Network model: We consider in this work a real network

topology taken from the European Research Network GEANT
with 41 network nodes and 60 links that connect the main
European cities. We adopt the link capacities that are given
by GEANT. Finally, we assume that a flow table size of
125 entries is dedicated at each node to the considered VLs
resource allocations.
2) Load model: We assume that requests arrive following

a Poisson distribution with an arrival rate λ that is varied
on {0.6, 0.7, 0.8, 0.9, 1} i.e. the average number of requests
varies from 60 to 100 requests per 100 units of time (UT)
respectively. The requests lifetime conforms to an exponential
distribution with an average of 125UT. The number of VLs
per request is set according to a discrete uniform distribution,
using the values given in [6, 12]. The bandwidth requirement
is uniformly distributed between 100 and 300Mbps.
3) Algorithms settings: We implemented our ILP formula-

tion, using concert technologies C++ as the modeling layer and
IBM CPLEX 12.6 as solver. The resolution time of the solver
is set to a maximum of 3600 seconds. A gap of less than 5% to
the optimal solution is considered satisfactory. The simulation
horizon is fixed to 1500UT. The fixed Parameters α1, α2, β1,
β2 and ρ of the objective function are set to 1, 100, 1, 300, 100
respectively. The parameters of the selection algorithm are set
as follows: θ = 0.95, Nmax is varied over {10, 20, 30}. Our
solution is compared to “SDN-VN” calibrated like in [2].

B. Evaluation results and analysis
1) Effects of Nmax: We first examine the impact of Nmax

on the different performance metrics by analyzing the results
illustrated in Figures 1a, 1b and 1c. Before that, let’s introduce
Figure 2, which shows the total number of triggers having
resulted in a successfully mapping and the average number
of reallocated VLs at each trigger as a function of the arrival
rate. An important observation is that, even though only Nmax

over all running VLs are involved in the reallocation process,
only a fraction by around 80% are migrated. In one side,
this shows that not all VLs deserves being migrated. On
the other hand, 80% is a satisfactory score revealing the

efficiency of pre-selection algorithm. From Figure 1c, we
evidently observe that the average convergence time of our
ILP considerably reduces when Nmax decreases. Figure 1a
shows the average acceptance ratio for different values of
Nmax. Obviously, the acceptance ratio increases with the
number of VLs involved in the reallocation. The reason is
that, reallocating more VLs gives more chance to unload
over loaded substrate links and nodes, hence promoting the
requests admittance. Unfortunately, the migration cost also
grows as depicted in Figure 1b. It is clear that the migration
cost and acceptance ratio are conflictual metrics leading to a
compromise, which must be treated according to the use case.

 0

 50

 100

 150

 200

 0.6 0.7 0.8 0.9 1
Arrival Rate

Nmax10: Number of triggers
Nmax10: Avg reconfigured VLs per trigger

Nmax20: Number of triggers
Nmax20: Avg reconfigured VLs per trigger

Nmax30: Number of triggers
Nmax30: Avg reconfigured VLs per trigger

Fig. 2. Reconfigurations over triggers

2) Comparative analysis: The final experiments show the
gain of our proposal, compared to ILP without migration
and also with ILP without migration but operating with the
proactive approach “SDN-VN”. The results from Figure 3a
show that reallocation improves the requests admissibility. It
also shows that, our proposal achieves better acceptance rate
than “SDN-VN”, as well as a lower migration cost.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

ep
ta

nc
e

R
at

e

Arrival Rate

ILP without migration using SDN-VN
ILP with migration

ILP without migration

(a) Comparison on Acceptance Rate

 500

 1000

 1500

 2000

 0.6 0.7 0.8 0.9 1

To
ta

l n
um

be
r o

f r
ec

on
fig

ur
at

io
ns

Arrival Rate

ILP without migration using SDN-VN
ILP with migration

(b) Comparison on Migration Cost

Fig. 3. Comparisons (Nmax = 10)

VI. CONCLUSION

This paper has proposed a reactive defragmentation and
remapping Integer-Linear Program method for an efficient on-
line virtual links mapping in SDN networks. The proposed
method supports point-to-point and also point-to-multipoint
VLs each with an associated bandwidth requirement. Their
remapping takes into account some of the specificities of
SDN, namely the current limitation of switching resources
(size of the flow and group tables). Another characteristic is
that it jointly selects an appropriate set of VLs which will be
migrated while mapping the newly rejected VLs request.

Our solution was evaluated on a real network topology and
compared to the SDN-VN method. The simulations showed
that our proposal improves the admissibility of VLs requests
and outperforms SDN-VN by 12% in terms of acceptance rate
with a gain on migration costs around 40%.
These preliminary results will be pursued. In our future

work, experiments will be extended in order to assess the
influence of parameter θ. Also, Point-to-Multipoint VLs will
be considered in the performance evaluations.

ACKNOWLEDGMENT
This work was partially funded by the French National

Research Agency (ANR) and the French Defense Agency
(DGA) under the project ANR DGA ADN (ANR-13-ASTR-
0024) and by European Unions Horizon 2020 research and
innovation programme under the ENDEAVOUR project (grant
agreement 644960).

REFERENCES
[1] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and

T. Turletti, “A survey of software-defined networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, Third 2014.

[2] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, F. De Turck,
and S. Latr, “Dynamic resource management in sdn-based virtualized
networks,” in 10th International Conference on Network and Service
Management (CNSM) and Workshop, Nov 2014, pp. 412–417.

[3] M. Demirci and M. Ammar, “Design and analysis of techniques for map-
ping virtual networks to software-defined network substrates,” Computer
Communications, vol. 45, pp. 1 – 10, 2014.

[4] L. R. Bays, L. P. Gaspary, R. Ahmed, and R. Boutaba, “Virtual
network embedding in software-defined networks,” in NOMS 2016 -
2016 IEEE/IFIP Network Operations and Management Symposium,
April 2016, pp. 10–18.

[5] F. S. Tegueu, S. Abdellatif, T. Villemur, P. Berthou, and T. Plesse,
“Towards application driven networking,” in 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), June
2016, pp. 1–6.

[6] R. Trivisonno, I. Vaishnavi, R. Guerzoni, Z. Despotovic, A. Hecker,
S. Beker, and D. Soldani, “Virtual links mapping in future sdn-enabled
networks,” in Future Networks and Services (SDN4FNS), 2013 IEEE
SDN for, Nov 2013, pp. 1–5.

[7] B. Wanis, N. Samaan, and A. Karmouch, “Substrate network house
cleaning via live virtual network migration,” in 2013 IEEE International
Conference on Communications (ICC), June 2013, pp. 2256–2261.

[8] T. P. N. and T.-G. A., “Reconfiguration of virtual network mapping
considering service disruption,” in 2013 IEEE International Conference
on Communications (ICC), June 2013, pp. 3487–3492.

[9] P. N. Tran, L. Casucci, and A. Timm-Giel, “Optimal mapping of
virtual networks considering reactive reconfiguration,” in 2012 IEEE
1st International Conference on Cloud Networking (CLOUDNET), Nov
2012, pp. 35–40.

[10] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “Vnr algorithm:
A greedy approach for virtual networks reconfigurations,” in Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, Dec
2011, pp. 1–6.

[11] E. Estrada and D. J. Higham, “Network properties revealed through
matrix functions,” SIAM Review, vol. 52, no. 4, pp. 696–714, jan 2010.

[12] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar. 2008.

[13] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proceedings IEEE IN-
FOCOM 2006. 25TH IEEE International Conference on Computer
Communications, April 2006, pp. 1–12.

[14] N. Farooq Butt, M. Chowdhury, and R. Boutaba, Topology-Awareness
and Reoptimization Mechanism for Virtual Network Embedding. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 27–39.

