
A dynamic resource defragmentation scheme for
virtualized SDN-enabled substrate networks

A. F. Simo Tegueu∗†, Slim Abdellatif∗†, Thierry Villemur ∗‡ and Pascal Berthou ∗§

∗CNRS, LAAS, 7 Avenue du colonel Roche, F-31400 Toulouse, France
†Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
‡Univ de Toulouse, UT2J, LAAS, F-31100 Toulouse, France
§Univ de Toulouse, UPS, LAAS, F-31400 Toulouse, France

Abstract—Virtual network embedding (VNE) was subject to
extensive research which lead to the emergence of a large number
of ef¿cient online VNE algorithms. When virtual networks
(VNs) arrive and depart over time, the substrate network can
easily drift into an inef¿cient con¿guration, where resources
are increasingly fragmented causing a VN request rejection
although cumulatively, there are enough available resources.
The ability to reallocate running VNs clearly leads to a bet-
ter resource utilization. In this paper, we propose “Garbage
Collector”(GC), a novel network control program for dynamic
and online resource management in virtualized SDN-enabled
substrates. GC ef¿ciently addresses the fragmentation problem
by performing selective migration. Simulations show that GC
clearly improves acceptance ratio of VNE algorithms. They
also reveal that, it outperforms some existing works from the
literature by increasing the VN acceptance ratio by more than
10%.

I. INTRODUCTION

Network virtualization enables the co-existence of multiple
concurrent VNs over the same substrate network (SN) in an
independent and isolated manner. It relies on algorithms com-
monly known as “Virtual Network Embedding” algorithms to
compute the substrate network resources that support each VN.
When VNs arrive and leave the infrastructure over time, the

SN can easily drift into an inef¿cient con¿guration. Although
cumulatively, enough resources are available, new VN requests
may be rejected because these resources are too fragmented.
The ability to reallocate running VNs allows enhancing re-
source utilization. This is why a defragmentation mechanism
is usually used to complement online VNE algorithms to
proactively or reactively trigger some VLs (Virtual Links)
reallocations. Their objective is to evenly spread the load
leading to a reduction of network resource fragmentation and,
as a consequence, an improved admissibility for forthcoming
VNs requests.
However, migrating reallocated VNs is non-trivial. It in-

volves numerous operations to instantiate virtual nodes and
redeploy their connecting VLs. Realizing these operations
at hand is a time-consuming task as well as error prone.
The emerging SDN paradigm has been recognized as a key
solution to overcome these problems by enabling dynamic and
automated con¿gurations for a fast and reliable deployment.
But, its use has also introduced some new constraints, namely,
the limited capacity of forwarding tables, which is actually

around a few thousands of entries [1] [2] in commodity SDN-
compliant switches. These switching resources are not only
requested by virtual nodes, they are also required to embed
VLs. In fact, a number of Àow rules have to be installed on
auxiliary nodes i.e., nodes that are not part of VN request, but
are part of the physical paths that host the VLs.
In this paper, we propose a new dynamic proactive resource

defragmentation scheme based on path migration, to address
the fragmentation problem inherent to online virtual links
mapping in virtualized SDN-enabled infrastructures. It relies
on a proactive selection of the VLs to migrate, which is
triggered on a VN departure in case of presence of congested
entities with a network resources fragmentation state. The VLs
selection objective is to loosen the congested substrate entities
while limiting the number of VLs to migrate. For increased
defragmentation ef¿ciency, the remapping of all selected VLs
is jointly performed.
The rest of this paper is organized as follows. Section

II discusses existing SN resource management approaches.
In Section III, we describe and formulate the problem of
defragmentation, before introducing our proposed solution in
Section IV. Section V presents the evaluation and discusses
the obtained results. Last, section VI concludes this paper.

II. RELATED WORK
Commonly, resource defragmentation algorithms are de-

composed into three successive phases that we refer as:
controlling recon¿guration, selecting candidate virtual com-
ponents and remapping.
1) Controlling recon¿guration: As it is not conceivable to

apply recon¿guration continuously, the objective is to deter-
mine when to trigger the process such as the recon¿guration
is effective. We distinguish two categories of approaches ac-
cording to the trigger mode: periodic [3] [4] and event-based.
This last category is decomposed into three subcategories: (1)
reactively triggered on VN request rejection; (2) proactively
[2] [5] triggered by events like VN departure and (3) hybrid
which can be triggered when a VN request embedding fails
or/and on a VN expiration. Some solutions [3][6][5] condition
the recon¿guration by the level of congestion beyond which
the recon¿guration happens.
2) Selecting candidate virtual components: During this

phase, critical virtual components (logical group of virtual

links and/or nodes) potentially recon¿gurable are selected.
The number of virtual components being limited in order
to reduce computational costs and recon¿guring duration,
they should be relevantly chosen. The selection of each
virtual component depends on many factors like: short-term
re-optimization objectives, the considered substrate resources
(link and/or switching, ..) and the considered virtual entities
(virtual node and/or link). The selection typically assesses the
impact of each running virtual component and chooses the
ones that are expected to mostly contribute to the reduction of
fragmentation.
3) Remapping: At this stage, the previously selected virtual

components are reallocated. We distinguish three criteria to
classify remapping methods. The ¿rst one includes: (1) inte-
grated approaches [7] [8] that execute the selection and the
remapping in a coordinated manner simultaneously; and (2)
separated approaches where the selection and the remapping
are performed independently. The second criterion includes
interrelated approaches [9], which require speci¿c information
from the initial embedding strategy, unlike the approaches that
are able to operate with any initial embedding strategy. Finally,
the last criterion allows to distinguish the approaches that
are restrained to reallocate the selected virtual components
individually (i.e sequentially), from those able to treat them
simultaneously for a further ef¿cient resource utilization.
The defragmentation scheme that we are proposing is a

proactive in the extent that it is not triggered on a VN rejection,
but typically on a VN departure. More precisely, to avoid
frequent and useless recon¿guration, a recon¿guration attempt
is conditioned by the congestion level and the fragmentation
level of substrates links and nodes. On a recon¿guration
attempt, not all running VLs are remapped, neither all VLs
belonging to a same VN. Instead, a subset of VLs that can be
pro¿tably migrated are selected. Our proposal is not related to
any speci¿c VNE algorithm. It can complement any suitable
VNE algorithm. Our approach is hence able to take advantage
of existing VL mapping strategies by remapping all selected
VLs jointly for a better resource allocation.

III. PROBLEM DESCRIPTION AND FORMULATION

In this study, we consider a SN with a ¿xed topology and
¿xed links and nodes capacity. The VNs consisting of a set
of VLs come and leave the infrastructure dynamically. Their
required resources are static during their lifetime. They are
treated in sequence by an initial online embedding algorithm,
with no information on future requests. We assume that its
ultimate goal is to improve the acceptance ratio of VN re-
quests. Only the lack of available resources may cause request
rejection. A VN request is considered accepted, only if all
VLs composing it, are successfully mapped onto the SN. We
assume that all currently embedded VNs can be dis-embedded
and re-embedded.

A. Network model
The SDN substrate network is modeled as a bidirectional

graph G = (N,L) where N is the set of SDN nodes and

L(L ⊆ N × N) the set of physical links which operate
in full-duplex mode. To each node i ∈ N , is associated
a switching capacity Ui, which is the maximum number of
entries (i.e. size limit) of its Àow table. The current size of
node i Àow table is denoted by U ′

i . Each link (i, j), i, j ∈ N
is weighted by its bandwidth Bij . Links are assumed to have
the same characteristics in both directions, i.e. Bij = Bji. The
bandwidth that is currently assigned at link (i, j) by already
admitted virtual links is denoted by B′

ij .

B. Virtual network requests model
A VN request is composed of a set of K VLs. Each VL

k is characterized by: a source node sk ∈ N , and a set
of destination nodes Tk ∈ N\{sk} (when |Tk| = 1, the
VL is point-to-point, otherwise it is point-to-multipoint); a
bandwidth requirement of bk.

C. Virtual link mapping model
The initial embedding algorithm maps each VL k to a

substrate path denoted as Fk, which consists of a set of
physical links and nodes. fk(i, j) refers to the amount of
bandwidth used on link (i, j) ∈ Fk by the VL k. Likewise, we
denote by lk(i) the number of entries that are allocated at node
i ∈ Fk Àow table to support VL k with the assumption that
all entries consume the same amount of resources regardless
of the complexity of the match operation and the related
instructions to perform.

D. Resource defragmentation objectives
As stated in section III, the long-term objective is to enhance

the embedding performance in terms of VN acceptance ratio.
To this end, at each trigger of the defragmentation mechanism,
the objective is to:

• minimize the number of congested substrate links and
nodes while

• reducing the resources spent to map existing VLs, also
known as embedding cost.

Unfortunately, the excessive remapping of running VLs can
cause network instability and can also induce signi¿cant
computational costs, as well as bandwidth overhead due to
the rerouting rules which are sent from the controller to the
nodes. Consequently, our last objective is to restrict the whole
number of VLs that will be migrated.

IV. PROPOSED SOLUTION
In this section, we present our proposal called “GC” (Al-

gorithm 1), which is based on a heuristic approach. Acting as
an event-condition-action engine, GC is proactively triggered
when a VN leaves the infrastructure. It is structured into three
successive phases. The ¿rst one denoted Controlling recon-
¿guration aims at determining at which conditions substrate
resources are considered as fragmented and if, there is an
urgent need for carrying out migrations. The next one, called
Selecting virtual links aims at determining which VLs can
pro¿tably be migrated. And the last phase Remapping during
which new mappings (hosting substrate paths and related
assigned resources) are calculated, to reroute selected VLs.

Algorithm 1: Garbage Collector algorithm
Input : G(N,L);X set of running Virtual Links;

Fk ∀k ∈ X; θ; Nmax; τ
1 begin
2 Initialize ℵθ ←− set of substrate links

(i, j) : s(i, j) ≥ θ ∪ set of substrate nodes i :
s(i) ≥ θ; IN and IL; Success ←− false; ζ ←− ∅

3 if ((ℵθ ̸= ∅) and (IN > τ or IL > τ)) then
4 ζ ←− Select VLs(G(N,L), X, Fk, θ, Nmax)
5 Revert currently assigned allocations to ζ
6 Success ←− Reallocate(ζ, G(N,L))
7 if (Success) then
8 Commit new assigned allocations to ζ

9 else Rollback currently assigned allocations to ζ
10

A. Controlling recon¿guration

Unlike some approaches that systematically recon¿gure
when an event occurs, we propose (Algorithm 1 : line 3)
to jointly combine two conditions that must be satis¿ed to
launch a migration attempt: one on the congestion level of the
substrate resources, and the other on their fragmentation level.
1) Detecting congestion: The congestion of only one sub-

strate entity, may cause a rejection of a complete VN request
or force mapping new VLs over more resource consuming
(longer) paths. Hence, congestion is a fundamental situation
that must be considered. On the other hand, it is important to
spare some SN entity namely those with a central position in
the SN topology that are likely to be frequently solicited. So,
a SN entity is considered to be θ-congested if its stress s is
greater than θ. Formally,

s(i) = w(i) ∗

∑

k(lk(i))

Ui
≥ θ (1)

s(i, j) = w(i, j) ∗

∑

k(fk(i, j))

Bij
≥ θ (2)

where s(i) and s(i, j) represent respectively the stress of
physical node i and link (i, j). w(i) and w(i, j) are the
normalized node and link importance calculated ofÀine based
on notions such as centrality, communicability and betweeness
[10]. θ is the congestion threshold from which an SN entity
is considered congested. k ∈ X , X being the set of running
VLs.
2) Detecting fragmentation: As the resource fragmentation

is due to the departure of a VN which releases resources,
the congestion may occur even if the network is in a clean
state (for example when requests come and leave following
LIFO (Last In First Out)). The resource fragmentation level
allows to detect such situation (not only), hence avoiding
the useless triggering of recon¿gurations. The level of SN

Algorithm 2: Select VLs
Input : G(N,L);X set of running Virtual Links;

Fk ∀k ∈ X; θ;Nmax

Output: ζ set of selected virtual links
1 begin
2 Initialize ζ ←− ∅;Γ ←− ∅;C ←− ∅;nmax ←− 0
3 repeat
4 C ←− X\ζ; nmax ←− Nmax − |ζ|
5 Γ ←− MSS-MRu(G(N,L), C, Fk, θ, nmax)
6 ζ ←− ζ ∪ Γ
7 until (|ζ| = Nmax or Γ = ∅)

resources fragmentation is measured by two indexes formally,

IN =
Max(s(i), ∀i ∈ N)

∑
i∈N (s(i))

|N |

≥ τ (3)

IL =
Max(s(i, j), ∀(i, j) ∈ L)

∑
(i,j)∈L(s(i,j))

|L|

≥ τ (4)

Where IN (1 ≤ IN ≤ |N |) and IL(1 ≤ IL ≤ |L|) represent
respectively the fragmentation index of physical nodes and
links. The more the indexes are close to 1 the more allocations
are fairly distributed on the SN. The parameter τ is the
threshold from which fragmentation is detected.

B. Selecting virtual links
Unlike some approaches proposing to select all VLs of the

VNs that are mapped over congested entities, we propose to
limit the number of VLs to migrate to Nmax. For example, it
may be ¿xed to the number of VLs composing the departing
VN. Algorithm 2 shows how the selection is performed. This
iterative algorithm selects at each iteration (line 3−7) a set of
nmax (nmax ensures that the total number of selected VLs will
not exceed Nmax) VLs noted Γ, among not yet selected ones
noted C. The algorithm iterates until the number of selected
VLs reaches Nmax or stops when there is no more potentially
suitable VL in C. We rely on a primitive function noted MSS-
MRu for “Minimum Spanned Set with Maximum Resource
utilization”, in order to select a subset of VLs at each iteration.
1) Minimum Spanning Set (MSS) with Maximum Resource

utilization: We de¿ne a Spanning Set as a set of VLs denoted
Γ, such as each θ-congested substrate nodes and links from
the set denoted ℵθ, hosts at least one VL of Γ. Selecting
a spanning set of VLs allows to consider all θ-congested
entities. A Minimum Spanning Set is a Spanning Set with
the minimum number of VLs. A Minimum Spanning Set with
Maximum Resource utilization is a MSS such that the sum
of assigned resources is maximum. It typically includes, the
most consuming VLs, i.e those mapped on a longer substrate
path or over multiple substrate paths.
Initially, referring to Algorithm 3 : line 2, the set of selected

VLs denoted Γ is empty. The variable ℵθ refers to the set of θ-
congested substrate links, as well as nodes (The load of each
node is calculated without considering, the load of the VLs

Algorithm 3: Minimum Spanning Set with Maximum
Resource utilization (MSS-MRu)
Input : G(N,L);C set of candidate Virtual Links;

Fk ∀k ∈ C; θ;nmax

Output: Γ set of spanning virtual links
1 begin
2 Initialize Γ ←− ∅;ℵθ ←− {Set of congested substrate

links and nodes (the load of each node is calculated
without considering, the load of the VLs for which
it is an end node) }; ℵθ ←− ∅; ∀k ∈ C calculate
Ak, Ak, Rk; a priority queue PQ ←− ∅

3 repeat
4 PQ ←− ∅
5 foreach k ∈ C\Γ do
6 PQ.enqueue(k) using Comparator

7 k ←− PQ.dequeue()
8 Γ ←− Γ ∪ {k}
9 ℵθ ←− ℵθ ∪ (ℵθ ∩ (Fk\{{sk} ∪ Tk}))
10 ∀k ∈ C\Γ Update Ak

11 until ((|Γ| = nmax) or (
∣

∣ℵθ

∣

∣ = |ℵθ|))

for which it is the end node). The variable ℵθ refers to the
set of spanned θ-congested entities. For each VL k in C, the
algorithm maintains three metrics that are used to evaluate the
suitability of migrating the VL.

• We de¿ne the impact of a VL on a given set, as the
number of elements of its substrate paths belonging to
this set except its source and destination nodes. We
distinguish two variants of the impact: impact of a VL
k on ℵθ noted Ak and its impact on ℵθ\ℵθ noted Āk.
Formally,

Ak = |ℵθ ∩ {Fk\ {{sk} ∪ Tk}}| (5)
Ak =

∣

∣(ℵθ\ℵθ) ∩ {Fk\ {{sk} ∪ Tk}}
∣

∣ (6)

• We also de¿ne resource utilization Rk of a VL k as total
resources assigned to VL. It reÀects how much the VL
affects overall resource utilization on congested substrate
links and nodes. It is calculated as follows:

Rk = α ∗
∑

(i,j)∈Fk

(fk(i, j)) + β ∗
∑

i∈Fk

lk(i) (7)

It is important to note that, this formulation considers
both, link bandwidth resource, as well as switching
resources in term of Àow table entries. Parameters α and
β allow to con¿gure the relative importance of each type
of resource.

We also introduce a priority queue PQ to sort VLs based
on a comparison logic called Comparator which works as
follows: a VL k1 is more suitable (of higher priority) than
another one k2 if Ak1 > Ak2; else if Ak1 = Ak2, then k1 has
priority if Ak1 > Ak2; else if Ak1 = Ak2 then k1 has priority
if Rk1 > Rk2. Otherwise one will be arbitrary designated as
having priority. The algorithm iterates (algorithm 3: line 3 -

�

� �

�

��

�
�� �

�� � �� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �
�� �

�� �

�� �

(a) Initial state

�

� �

�

��

�
�� �

�� � �� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �

�� �
�� �

�� �

�� �

(b) After remapping

Fig. 1. Virtual Links Selection and Migration example

11) until the number of selected VLs reaches nmax, or stops
when all congested entities are spanned. At each iteration,
the PQ is refreshed, and the suitable VL is selected. The
congested entities hosting selected VL are marked as spanned
except for its source and destination nodes, and the impact of
the rest (C\Γ) of VLs on not yet spanned entities, is updated.

TABLE I
MSS-MRU IN ACTION

Iteration Γ ℵ ℵ C

Initialization ∅
(B,D), (D,E)
(C,D), (D,F)
C,D,B,E

∅
k1(4, 4, 7), k2(4, 4, 7)
k3(3, 3, 5), k4(4, 4, 7)

1 k1
(B,D), (D,E)
(C,D), (D,F)
C,D,B,E

(B,D), (D,E)
D,B

k1(4, 4, 7), k2(2, 4, 7)
k3(2, 3, 5), k4(2, 4, 7)

2 k1, k2

(B,D), (D,E)
(C,D), (D,F)
C, D,B, E

(B,D), (D,E)
(C,D)
D,B,C

k1(4, 4, 7), k2(2, 4, 7)
k3(1, 3, 5), k4(2, 4, 7)

3 k1, k2, k4

(B,D), (D,E)
(C,D), (D,F)
C,D,B,E

(B,D), (D,E)
(C,D), (D,F)
D,B,C,E

k1(4, 4, 7), k2(2, 4, 7)
k3(1, 3, 5), k4(2, 4, 7)

Legend: (A −→ E) = k1; (B −→ A) = k2; (C −→ F) = k3; (G −→ F) = k4

k(x, y, z) = k(Ak, Ak, Rk)

2) Application: Let’s consider a SN G(N,L) with 4 VLs
((A −→ E), (B −→ A), (C −→ F), (G −→ F)). When
activating GC, the MSS-MRu algorithm determines which VLs
can pro¿tably be migrated. Assume that each VL requests 1
unit of bandwidth and requires 1 Àow table entry at each node.
Also, the congestion threshold θ is set to 0.5. With these
assumptions, there are 10 (6 nodes and 4 links) congested
entities and 26 (11 units of bandwidth and 15 units of Àow
table entries) units of resources currently consumed. When
MSS-MRu algorithm is executed with nmax = 3, the VLs
(A −→ E), (B −→ A), (G −→ F) are remapped as shown in
Figure 1b. The result is a better network state with 5 (4 nodes
and 1 link) congested entities , and 18 (11 units of bandwidth
and 7 Àow table entries) units of resource consumed. Table I
details step by step the behavior of the MSS-MRu algorithm.

C. Remapping
The last step (Algorithm 1 : line 6) of our strategy consists in

¿nding new substrate paths to reroute each previously selected
virtual links. The performance of our solution, rely not only on
the ef¿ciency of the ¿rst two phases, but also on the ef¿ciency
of the remapping algorithm. This latter must be chosen in
adequacy with the targeted objectives of the defragmentation
algorithm in order to avoid counterproductive effects, namely,
in our case: the consideration of link bandwidth and switching

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

ep
ta

nc
e

R
at

e

Arrival Rate

Nmax = 10
Nmax = 15
Nmax = 20

(a) Impact of Nmax - A. R.

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0.6 0.7 0.8 0.9 1

To
ta

l n
um

be
r o

f m
ig

ra
tio

ns

Arrival Rate

Nmax = 10
Nmax = 15
Nmax = 20

(b) Impact of Nmax - M. C.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

ep
ta

nc
e

R
at

e

Arrival Rate

Simultanous
Individual

(c) Sim. vs ind. mapping - A. R.

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.6 0.7 0.8 0.9 1

To
ta

l n
um

be
r o

f m
ig

ra
tio

ns

Arrival Rate

Simultaneous
Individual

(d) Sim. vs ind. mapping - M. C.

Fig. 2. Impact of parameters (θ = 0.9, τ = 2)

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

A
cc

ep
ta

nc
e

R
at

e

Arrival Rate

Reconfiguration using GC
Reconfiguration using SDN-VN

No Reconfiguration

(a) Comparison - Acceptance Rate

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0.6 0.7 0.8 0.9 1

To
ta

l n
um

be
r o

f m
ig

ra
tio

ns

Arrival Rate

GC
SDN-VN

(b) Comparison - Migration Costs

Fig. 3. Comparisons (Nmax = 10, θ = 0.9, τ = 2)

resources and the objective of allocating resources ef¿ciently
and fairly. These objectives are usually considered in many
VNE algorithms amongst [11] [12] [13].

V. PERFORMANCE EVALUATION

We ¿rstly introduce the simulation settings, before present-
ing our main results.

A. Simulation settings

Our algorithm is applied to a real network topology with
different randomly generated VLs requests. The considered
experimental set up is described hereafter.
1) Network model: We consider in this work a real network

topology taken from the European Research Network GEANT
with 41 network nodes and 60 links that connect the main
European cities. Like [2], we assume that a Àow table size of
125 entries (The remainder being reserved to the forwarding
table of the virtual nodes) is dedicated at each node to VLs
resource allocation. We consider that each Àow rule requires
1 entry in the Àow table of traversed nodes.
2) Load model: We assume that requests arrive following

a Poisson distribution with an arrival rate λ that is varied
on {0.6, 0.7, 0.8, 0.9, 1} i.e. the average number of requests
varies from 60 to 100 requests per 100 units of time (UT)
respectively. The requests lifetime conforms to an exponential
distribution with an average of 125UT. The number of VLs
per request is set according to a discrete uniform distribution,
using the values given in [6, 12]. The bandwidth requirement
is uniformly distributed between 100 and 300Mbps.

3) Algorithms settings: The embedding algorithm to opti-
mally map VLs onto the SN is based on an ILP formulation
taken from [11]. It is used for both: mapping in-coming VNs
and remapping selected VLs. The Integer Linear model was
implemented in C++ with CPLEX-12.06 solver. The resolution
time is set to a maximum of 15 seconds. A gap of less than
5% to the optimal solution is considered satisfactory. The
simulation horizon is ¿xed to 1500UT. The parameters of
GC are set as follows: τ = 2, θ = 0.90, Nmax is varied on
{10, 15, 20}, α = 1 and β = 200. These two latter parameters
are calibrated to scale switching and bandwidth resources to
the same magnitude. The remapping is performed in both
modes, simultaneously (all selected VLs mapped jointly) and
individually (VLs mapped one by one). GC will be compared
to another ef¿cient solution from the literature, called “SDN-
VN” [2] that is a proactive approach also considering switch-
ing resources.

B. Performance metrics
• Acceptance Rate (A.R): the percentage of successful
virtual links requests out of all the requests that arrived
during the simulation time.

• Migration Cost (M.C): the total number of migrations
occurred during the whole simulation.

• Maximum instantaneous link/node utilization: the greater
percentage of assigned bandwidth/Àow table entries at
a given link/node, computed at a time instant t, i.e.
Max(

B′

ij

Bij
∀(i, j) ∈ L) for links and Max(U

′

i

Ui
∀i ∈ N)

for nodes.

C. Evaluation results and analysis
1) Effect of Nmax: We ¿rst examine the inÀuence of the

maximum number of VLs to migrate at each trigger of GC.
Figures 2a and 2b show the performance of GC in terms of
acceptance ratio and migration cost as a function of the arrival
rate (λ). We evidently observe that, the acceptance ratio is
improved when Nmax increases. The reason is that, remapping
more VLs gives more chance to unload congested nodes and
links, which may cause requests rejection. We also observe
that, at the high offered load, more gain can be achieved. This
is because, at low loads, even though the available resources
are fragmented, they are suf¿ciently abundant to successfully
process incoming requests, by migrating just a few VLs. It

is also clear that, under excessively high load, the SN will
be continually saturated, and VLs requests will be rejected
independently of the value of Nmax. Furthermore, while
increasing Nmax, improves the requests admissibility, it also
leads to more recon¿gurations which increase the migration
costs as shown in Figure 2b.
2) Impacts of simultaneous vs individual remapping:

Another important aspect of our approach is its Àexibility
to simultaneously or individually remap the selected VLs.
Figures 2c and 2d show that the simultaneous allocation is
more ef¿cient. It decreases the ¿nal rejection ratio compared
to the case where VLs are reallocated in sequence. Since the
remapping algorithm has information about all selected VLs
and, it can achieve in one-shot, a better substrate resource
arrangement. Also, reallocating each VL individually, is less
ef¿cient than when all selected VLs are dis-embedded to be
reallocated simultaneously. This is why, as presented in Figure
2d, the migration costs are higher when VLs remapping is
performed simultaneously.

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

N
od

e
U

til
iz

at
io

n

Times(UT)

Reconfiguration using GC
Reconfiguration using SDN-VN

(a) max node utilization

 0.4

 0.6

 0.8

 1

 1.2

 0 200 400 600 800 1000 1200 1400 1600

Li
nk

 U
til

iz
at

io
n

Times(UT)

Reconfiguration using GC
Reconfiguration using SDN-VN

(b) max link utilization

Fig. 4. Instantaneous view (λ = 0.8, Nmax = 10, θ = 0.9, τ = 2)

3) Comparative analysis : The ¿nal experiments show the
gain of our proposal, compared to the ILP based VLs mapping
with no recon¿guration and with recon¿guration using SDN-
VN. As expected, the results from Figure 3a show that, when
VLs embedding strategy incorporates a defragmentation mech-
anism, the acceptance ratio is improved. The admittance gain
is on average about 10%. This is due to the dynamic resource
cleaning. Moreover, the results also show that GC signi¿cantly
increases the acceptance rate in comparison to legacy SDN-
VN. In fact, Figure 4 depicts the maximum instantaneous link
and node utilization when λ = 0.8. We have observed that, GC
is triggered at instant 163 when the ¿rst VN expiration occurs
in presence of 0.90-congested nodes. GC takes advantage
by minimizing maximum node utilization. Furthermore, more
bandwidth are consumed, but, while maintaining maximum
link utilization less than 0.9. Another key observation from
Figures 2c and 3a, regarding acceptance reveals that, GC
also outperforms SDN-VN even when VLs are individually
remapped. We think that, one of the main reasons is the fact
of removing source and destination nodes from “VL impact”
(equations 6). This allows to prioritize VLs whose traversed
congested intermediate nodes. This increases the likelihood of
moving a selected VL from its current substrate path to a more
pro¿table one. Figure 3b reveals that GC recon¿gures more

VLs than SDN-VN. This is due to the higher acceptance rate
that causes bottlenecks, and also more departures.

VI. CONCLUSION
This paper has proposed and evaluated a new proactive

VLs migration scheme to address SN resources fragmentation
in SDN environments. Its main features is an effective VLs
selection algorithm which selects the most impacting VLs for
migration, the consideration of switching resources and the
ability to remap the selected VLs simultaneously.
Our method was evaluated on a real network topology under

commonly used load models. The simulations show that our
proposal clearly improves the ef¿ciency of the mapping algo-
rithm and outperforms an existing solution from the literature.

ACKNOWLEDGMENT
This work was partially funded by by the European Union’s

Horizon 2020 research and innovation programme under the EN-
DEAVOUR project (grant agreement 644960) and by the French
National Research Agency (ANR) and the French Defense Agency
(DGA) under the project ANR DGA ADN (ANR-13-ASTR-0024).

REFERENCES
[1] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, and

T. Turletti, “A survey of software-de¿ned networking: Past, present,
and future of programmable networks,” IEEE Communications Surveys
Tutorials, vol. 16, no. 3, pp. 1617–1634, Third 2014.

[2] R. Mijumbi, J. Serrat, J. Rubio-Loyola, N. Bouten, F. De Turck,
and S. Latr, “Dynamic resource management in sdn-based virtualized
networks,” in 10th International Conference on Network and Service
Management (CNSM) and Workshop, Nov 2014, pp. 412–417.

[3] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proceedings IEEE IN-
FOCOM 2006. 25TH IEEE International Conference on Computer
Communications, April 2006, pp. 1–12.

[4] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: Substrate support for path splitting and migration,” SIG-
COMM Comput. Commun. Rev., vol. 38, no. 2, pp. 17–29, Mar. 2008.

[5] B. Wanis, N. Samaan, and A. Karmouch, “Substrate network house
cleaning via live virtual network migration,” in 2013 IEEE International
Conference on Communications (ICC), June 2013, pp. 2256–2261.

[6] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “Vnr algorithm:
A greedy approach for virtual networks recon¿gurations,” in Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, Dec
2011, pp. 1–6.

[7] P. N. Tran, L. Casucci, and A. Timm-Giel, “Optimal mapping of
virtual networks considering reactive recon¿guration,” in 2012 IEEE
1st International Conference on Cloud Networking (CLOUDNET), Nov
2012, pp. 35–40.

[8] T. P. N. and T.-G. A., “Recon¿guration of virtual network mapping
considering service disruption,” in 2013 IEEE International Conference
on Communications (ICC), June 2013, pp. 3487–3492.

[9] N. Farooq Butt, M. Chowdhury, and R. Boutaba, Topology-Awareness
and Reoptimization Mechanism for Virtual Network Embedding. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010, pp. 27–39.

[10] E. Estrada and D. J. Higham, “Network properties revealed through
matrix functions,” SIAM Review, vol. 52, no. 4, pp. 696–714, jan 2010.

[11] F. S. Tegueu, S. Abdellatif, T. Villemur, P. Berthou, and T. Plesse,
“Towards application driven networking,” in 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), June
2016, pp. 1–6.

[12] H. Cao, L. Yang, Z. Liu, and M. Wu, “Exact solutions of vne: A survey,”
China Communications, vol. 13, no. 6, pp. 48–62, June 2016.

[13] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
Tutorials, vol. 15, no. 4, pp. 1888–1906, Fourth 2013.

