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Abstract—While the scale, frequency and impact of the recent
cyber- and DoS-attacks have all increased, the traditional security
management systems are still supervised by human operators in
the decisional loop. To cope with the new breed of machine-driven
attacks - particularly those designed to overload the humans in the
loop - the next-generation anomaly detection and attack mitigation
schema, i.e. the network security management, must improve
greatly in speed and accuracy: become machine-driven, too. As
infrastructure we propose an FPGA-accelerated Network Function
Virtualization that potentially enhances the current multi-Tbps
switching fabrics with SDN-based security capabilities of vastly
higher performance and scalability. As key novelties, we contribute
(i) sub-ms detection lag (ii) of the top 9 Akamai attacks [1]
with (iii) a real-time SDN feedback loop between a distributed
programmable data plane and a centralized SDN controller, (iv)
coupled via a global N:1 mirror. We validate the concept in an
actual datacenter network with a new security application that
can detect and mitigate real-world dDoS attacks, with lags from
430 us up to 3 ms - several orders of magnitude faster than before.

Index Terms—SDN, dDoS, switching, datacenter networking,
online datapath monitoring, intrusion detection and prevention.

I. INTRODUCTION AND MOTIVATION

Security experts lately notice more high-frequency ephemeral
attacks in the data path, engineered specifically to overload
the human component in the loop [2]. These may entail
sudden traffic volume swells directed towards a (subset of)
targets, lasting perhaps just milliseconds. Such high-frequency
transient anomalies hardly detectable with the current security
instrumentations – and even harder to prevent their potentially
harmful impacts. Indeed, although today’s datacenter networks
(DCNs) are built up of high-speed low-latency Tbps fabrics
– often supported by versatile SDN controllers – still their
control and management mechanisms are slow in reacting to
and mitigating such anomalies.

As an example, TCP flows can stay in SYN received state
between 1 and 5 minutes, depending on the configuration. The
number of SYN state entities in regular TCP stacks at server or
other endpoints range between 1,024 (the default backlog size
in the linux kernel) and a few thousands for high-performance
webservers [3]. In case such a server or endpoint is connected
via at least 10Gbps Ethernet, an aggressive DoS attack can
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fill it with TCP SYNs within a few ms. Such attacking traffic
can remain completely unnoticed, since the reaction time of
current security solutions is a few orders of magnitude higher.
This server cannot establish any further TCP connections for
the remaining 1-5 min. – until the SYN timers will expire.

The increasing occurrence of such high-frequency anomalies
requires high-performance, low-delay automated SDN security
solutions. The available commodity switching fabrics, however,
have limited capabilities both in delay and data granularity
when providing reports to SDN controllers. This reporting can
be improved and accelerated, e.g., via an FPGA-based traffic
analyzer. Such an FPGA-based element can provide low-latency
insights on security issues and other traffic anomalies to the
SDN controller. The newer DCN fabrics also allow to attach
these elements via a switch global mirroring port [4], [5], ie., a
dedicated switch port to which the entirety of the switch traffic
is mirrored.

Accordingly, we introduce an automated method to speed-
up the reaction lag in SDN-based datacenters via a new
closed, passive monitoring loop, accelerated by FPGA-based
processing units. Our solution aims to enhance the security ca-
pabilities of DCNs and large Cloud networks with a new FPGA-
accelerated Network Function Virtualization (NFV). Contrary
to the common practice today, we aim to autonomously detect
and mitigate the attacks designed to overwhelm the human
operator. The performance of our approach is 5-7 orders of
magnitude higher than the state of the art (us/ms-scale vs. hour-
scale), based on the automatic attack mitigation instead of the
typical human-in-the-loop. Our solution can mitigate the most
common 9 attacks [1] and is universally compatible with most
modern Tbps-class DCN switches, needing neither deep packet
inspection, nor the encryption keys. We present here the results
of our proof-of-concept implementation for 3 out of the 9 most
common attacks: UDP flood, DNS reflection and SYN flood.
Our solution can be deployed both to the entry point(s) of the
DCN and also in strategically-selected switches within the DC.

The rest of the paper is structured as follows. In Section II
we briefly describe the common fabrics used in today’s DCNs.
In Section III we introduce our FPGA-based SDN solution for
network security monitoring. In Section IV we describe a proof-
of-concept implementation of our solution. Section V presents
FPGA system we used, followed by experimental results and
discussion in Section VI. We conclude in Section VII.
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TABLE I
COMMODITY SWITCH CHIPS

DCN Switch Port rate [Gbps] 100Gb
ports

Total Bw
[Tbps]

SDN support and key features

BCM56860
(Trident II+)

1/10/40/100 8 0.8 OF1.3+ with Broadcom OF-DPA
VXLAN/NVGRE overlay and tunneling support

BCM56960
(Tomahawk)

25/40/50/100 32 3.2 OF1.3+ with Broadcom OF-DPA, VXLAN/NVGRE overlay and tunneling
support; FleXGS™ flow processing for configurable forwarding /match
/actionsTomahawk II 40/50/100 64 6.4

Mellanox Spectrum 40/56/100 32 6.4 OF1.4+
VxLAN/NVGRE overlay and tunneling support

Intel FM10840
Red Rock Canyon

1/10/25/100 6+4 PCIe 0.6-3.5
L2/L3/L4 OF forwarding, VxLAN and NVGRE tunnels,

4 MB shared memory, 32K 40-bit TCAM entries, 16K NextHop tables,
multi-switch SWAG configuration

Mellanox NP-5 1/10/40/100 2 0.24
Task Optimized Processing engines allow flexible packet classification and

modification, internal TCAM, internal memory, 24 DDR3 SDRAM I/F, 44 x
10.3125 Gb/s Interlaken

II. BRIEF SURVEY OF DCN SWITCHING FABRICS

Let us compare the key features and capabilities of ASIC-
based commodity fabrics and OpenFlow (OF-native) switches.

1) COMMODITY SWITCHES: The highest performing com-
modity switching chips on the DCN market offer up to 64
ports at 100 Gbps. Table I shows the main characteristics of the
common merchant switch chips used in today’s DCN fabrics.
The internal buffering and management system, scheduling and
table sizes are usually not fully documented. Thus it is relevant
to differentiate features internally implemented within the chips
from those added by means of external parts. Table I lists
the key hardware components to enable the SDN support, i.e.
internal memory, programmable processing units, and high-
speed IO interfaces to the corresponding external parts. Also
listed are the additional software needed, the level of OF
and Overlays support. Capability-wise, the number of flow
forwarding entries (FFE) for the Arista [6] and Cisco Nexus [7]
switches exceed 1M entries, but only with external TCAMs or
DDR3/DDR4 DRAMs. Typically no information on the number
of flow modifications per second (FMPS) is available.

2) SDN/OPENFLOW NATIVE SWITCHES: The ’native’
SDN/OF switches are also (partly) based on ASIC fabric
components. E.g., Corsa [8] uses an ASIC and an FPGA,
whereas the NoviSwitch system [9] is based on the Mellanox
NP-5 [10] network processor with integrated programmable
processing units (PPU). The FFE table size depends on external
parts. E.g., the NoviSwitch 21100 offers up to 1M flow entries
with external TCAM, versus only 16K entries with the inter-
nal TCAM. Notably different from the previous commodity
switches, the SDN/OF switches often specify the number of
flow modifications per second as a distinguishing performance
metric. Their figures are between 15K [8] and 40K [9] FMPS.

Comparing the above switching systems, we conclude that
ASIC-based commodity switches typically outperform the
SDN/OF-dedicated switches. The typical commodity fabrics
achieve a switching capacity of 1.2 to 3.6 Tbps in a single
line card, e.g., [6], vs. 0.512 Tbps [9] or 0.2 Tbps [8]. Most

commodity switches often do not specify their respective capa-
bilities for online modification of flow table entries. In contrast,
the native programmability of the SDN switches specifies up to
40K FMPS. The key for fast modifications in the native SDN
switches is the use of function-specific PPU [9] or FPGAs [8].
Software implementations with standard CPUs in the control
plane are too slow to achieve this goal at 40/50/100 Gbps and
10s of ports, i.e., multi-Tbps aggregate speeds.

III. WHY ACCELERATED COMMODITY SWITCHING?

A large body of the current research has focused recently
on the role of FPGAs and specialized processors as datacenter
accelerators [11], [12], [13], [14]. Similar to the Knowledge
Plane concept [15], we propose to ’attach’ an FPGA-based SDN
accelerator to commodity switches. Thus we aim to reconcile
the raw performance, 802-compliance and affordability of the
current Tbps-class commodity switches with the versatility and
programmability of native SDN designs.

Given the key role of online (i) flow modifications, and
(ii) datapath network operations also during the high utilization
and network congestion periods, we propose a solution in
bridging the discrepancy between today’s Ethernet commodity
and SDN switches. We augment the generic ASIC switches by
an FPGA attached via a high speed (40/100 Gbps) switch global
mirroring port. This we prove as a simple, generic (mirroring is
generally supported by today’s switches), flexible (many use-
cases), scalable (depending mainly on the number or mirroring
ports dedicated to SDN acceleration) method.

Exploiting (i) the flexibility of FPGAs in datacenter applica-
tions, and (ii) the fact that they typically outperform in terms
of packet processing performance the typical CPUs of today’s
commodity switches, there is a variety of use-cases whereby a
commodity switching fabric can be practically enhanced with
SDN-like FPGA-based NFVs. E.g.: Network security, monitor-
ing, load-balancing, adaptive routing, SDN overlay networks
etc. We will focus on the first use-case.

Security and Quality of Service (QoS) are increasingly
among the key considerations in the design of modern DC
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Fig. 1. Real-time network security FPGA-based design. The accelerator is attached to the switch via a global mirroring port. The FPGA can be responsible for
making very fast local decisions and/or informing the centralized SDN controller for slower, but more informed reaction. The accelerator collects the 10-100
Gbps streams of monitoring data, processes them and issues real-time updates to the fabric reconfiguration engine.

fabrics and DCNs. Especially in multi-tenant datacenter envi-
ronments, the protection from intended or unintented harmful
activity and the enforcement of agreed-upon Service Level
Agreements (SLAs) is of paramount importance for a cloud
provider. Similarly, in single-tenant PaaS and IaaS datacenters,
the detection of hardware malfunction and miss-configurations
– as a major source of disruptions! – along with the detection of
intrusion attempts are essential for ensuring the uninterrupted
operation of the offered services. As there is a diverse set of
monitoring and security operations that depend heavily on the
intended use of a datacenter, it is not trivial for the ASIC
suppliers to include and maintain all such capabilities in a low-
cost commodity switching DCN fabric.

In practice the typical switch CPUs do not have proper
capabilities to detect and timely react to security threats.
Examples are mentioned in the work of Suh et al. [16], where
it is shown that a common implementation of the sFlow packet
sampling functionality can only sample up to approximately
350 packets per seconds, or in studies showing that the switch
CPU can be overwhelmed by OpenFlow operations [17], [18],
[19]. We will show a practical example of how the attached
FPGA can accelerate DCN monitoring by extracting packet-
level information exclusively from the switch’s data plane and
utilizing the information for real-time DoS attack mitigation.

IV. SDN MONITORING: PLATFORM AND SETUP

As a proof of concept we have used an FPGA-based network
accelerator, the C-GEP board [20], [21] attached in a closed
feedback loop to a RedRock Canyon (RRC) FM10840 fabric,
in the context of high-speed monitoring for security. We use
the C-GEP board as (1) a passive monitor for capturing and
analyzing traffic at up to 100 Gbps, and as (2) an optional active
local SDN controller able to react within us-to-ms timescales
to mitigate anomalies and threats. We show an overview of our
solution design in Fig. 1.

A. Port Mirroring: A Generic Monitoring Primitive

For our high-speed SDN monitoring solution we rely on an
oversubscribed global (to the switch) mirroring port concept

similar to the Planck [4] and Everflow [5] systems, to cap-
ture and deliver raw packets to the accelerator. We reserve
a small subset – typically one, or 2-4 for special cases –
of the data-plane switch ports and use them specifically to
forward the monitoring data. We will refer to these reserved
ports as monitoring ports, and they should not be confused
with any special-purpose management and monitoring ports
that typically operate on the control plane. The switch is
configured to mirror all the packets (unless “Match&Mirror” is
selected) to the monitoring ports, a multicast-like operation that
is supported in hardware on modern switches. Due to the N:1
oversubscription packet drop may occur due to limited buffers
and forwarding in the monitoring ports, which Planck [4] uses
as a sampling function. The aggregated multi-Tbps traffic is
thus randomly sampled during the N:1 ’overloads’, while the
monitoring data stream remains constant, e.g 100Gbps. As the
oversubscribed mirror performs this sampling, the monitoring
data contain a global view of all traffic in the switch. Although
this method may raise concerns of buffer hogging, it has been
shown to have a negligible effect on the production traffic [4].

The merit of monitoring-via-global-mirroring is the speed
at which the packets are transparently extracted from the
dataplane. We preserve the monitoring data channel entirely
within the data plane, circumventing the switch CPU. Thus
we can achieve (much) higher throughput and lower latency in
the FPGA-based closed loop than in schemes such as SNMP
[22], sFlow [23] or NetFlow [24]. The faster the data can
be captured, the faster we can detect anomalies and react.
Additionally, this monitoring method also works well under
extreme conditions, e.g., during congestion as in Denial-of-
Service (DoS) [1] attacks. On the contrary, in such a scenario
a control-plane CPU would be overwhelmed and could push
monitoring tasks to a lower priority. This can lead to the
undesirable effect of producing less and less monitoring data,
meaning that our ability to analyze and react decreases with
the intensity of the attack. Data-plane monitoring, on the other
hand, produces data at the same rate under all conditions,
limited only by the aggregate throughput of the monitoring
ports used for the mirror.



B. Packet Processing: FPGA-Based Pipeline

The volume of raw data streams captured via mirroring sev-
eral 100 Gbps ports raises the issues of storing and processing
this information. Since it is not practically feasible to store
this raw data on disk, there is a need for online, real-time
processing. Furthermore, the raw packets carry a large amount
of redundant information and need to be pre-processed in order
to acquire estimates of the necessary metrics needed for the
various security applications.

In our pipeline (Fig. 1), the pre-processing step is done by
the C-GEP FPGA. Although it would be possible and beneficial
in many applications, for the privacy of our network traffic we
opt not to perform deep-packet inspection (DPI), but rather to
rely solely on the information included in the Layer 2 to Layer
4 headers. Non-DPI monitoring will become key in the future
DCN for two reasons: 1) privacy is a huge concern for users
and cloud providers with the EU’s GDPR update becoming
law in May’18, and, 2) the ubiquity of end-to-end encryption
and the use of multiple encrypted tunnels and transports will
make DPI less feasible as multiple keys – often managed by
different entities – will be needed for payload decoding. Thus
the future security applications will have to increasingly rely
on the behavioral characteristics of the traffic, rather than on
its content, in order to detect the anomalous behaviors.

The preprocessing stage of our pipeline (Fig. 1) converts
the mirrored data stream into a suitable format for anomaly
detection. Depending on the desired application or seervice,
this preprocessing may include the estimation of flow-level
statistics (e.g., per-flow throughput) or traffic matrices (e.g.,
subnet level).

The data is then analyzed in order to (1) detect anomalies,
i.e., behaviors that diverges from the ’normals’ of the traffic
flowing through the switch, and, (2) identify the culprits of
these anomalies. The anomaly detection can be based on a
wide variety of algorithms. Well-known types of anomalies
can usually be detected with rule-based (signature-based) de-
tectors [25]. Novel types of anomalies can be discovered using
behavioral-based detectors [26] that use statistical modeling and
machine learning techniques to detect outliers in the stream of
monitoring data.

C. Closed-Loop Monitoring Feedback: Local vs. Global

The red lines in Fig. 1 represent the closed-loop feedback of
our solution. After the anomaly detection stage, there are two
options for utilizing the results: (i) forwarding the anomalies’
report to the centralized SDN controller; or, (ii) using the
locally-attached C-GEP as a decentralized controller to make
autonomous decisions.

With option (i), the discovered anomalies are forwarded to
a centralized controller, which takes the responsibility for (a)
deciding on a reaction plan (either on its own or in conjunction
with other security entities), and, (b) updating the configuration
of the switch with new rules. This option is more suitable
for anomalies detected by a behavioral-based detector (novel
anomalies). For this kind of anomalies, there is usually a lower

Fig. 2. An example of a jointly monitored switch group comprising of 5
switches. Monitoring links between the switches and the C-GEP (in orange)
operate entirely in the data plane and provide high-speed data capture. Reaction
to anomalies detected in the traffic can be initiated either directly from the C-
GEP (dashed blue links) or by communicating the information to the SDN
controller (solid blue links), both operating in the control plane.

confidence that they constitute malicious traffic, as there can
also be novel benign traffic. Therefore, it is not desirable to
act upon them before validating that they indeed constitute a
danger to the network. The central controller also has a global
view of the network and can thus cross-validate information
and react in multiple points across the fabric.

With option (ii), the C-GEP makes local decisions and reacts
by online (re)updating the switch configuration on its own,
thus acting as a decentralized, local SDN controller. The major
benefit of option (ii) is that the reaction time can be reduced by
a few orders of magnitude, as there is neither a communication
delay with the centralized controller, nor a waiting period for
the validation process. In addition, the centralized controller can
become a bottleneck in the case of distributed attacks in larger-
scale networks, since the reaction may not reach all across
the network fast enough to adequately mitigate the attack.
Selecting between the two options is a trade-off that needs
to be balanced based on the services provided by the DC,
network, anomaly detection methodologies and the portion of
total network control performed by the centralized controller.

D. Monitoring Groups: SDN Switch Clustering

To fully utilize the resources of each C-GEP board, we
assign the monitoring responsibility of a group of K switches
to a single C-GEP as depicted in Fig. 2. The parameter K
depends on the total processing capabilities that the C-GEP
can provide to the given application. Currently, a single C-
GEP can process approx. 100 Gbps of traffic for the detection
of volumetric anomalies. Hence, for a monitoring application
that could tolerate a higher rate of packet sampling and 10 Gbps
monitoring ports, a single C-GEP would suffice to monitor up to
K=10 switches in parallel. Thus a single accelerator enables to
create a monitoring group for several Tbps of managed traffic.

V. C-GEP: A UNIVERSAL SDN ACCELERATOR

C-GEP [20], [21] is a high-performance FPGA-based net-
working hardware platform. Its reconfigurable architecture en-
ables a wide variety of networking applications (from media
gateways, traffic generators or monitors to SDN devices) to



Fig. 3. C-GEP anomaly detection pipeline.

be implemented and accelerated at 100Gbps. Here we present
how C-GEP can enhance the SDN functionality of commodity
Tbps-class datacenter switches. We show one practical use-case
dedicated to DCN security in which the mirror-attached FPGA
assists the switch fabric with security-related tasks: packet
parsing, flow classification, anomaly detection and mitigation
of malicious traffic by using dynamic ACL rules.

The main design principle for enhancing commodity switches
with SDN functionality at 40-100Gbps is a multi-pipeline
architecture that enables a high degree of paralellism in a
single FPGA chip. The modular architecture of the platform
was introduced in [20], [21].

The 512-bit internal C-GEP data path involves 4 pipeline
stages (modules) operated at 312.5 MHz: 100Gbps Ethernet
MAC with packet timestamping, packet parser, packet classifier,
anomaly detector and mitigator, respectively (Fig. 3). The
packet parser engine operates on protocol headers based on a
parse graph that is a compact representation of the predefined
header structures. To cover the spectrum of network protocols
present in DCNs, the parser engine allows the identification
of multi-encapsulated packets beyond decoding the classical 5-
tuple.

One essential functionality in many networking systems is
packet classification. This is the third phase in the internal
processing path of C-GEP in the intrusion detection use-case.
It requires input about the protocol fields of each incoming
packet from the packet parser stage, with the number and
size of header fields determining the complexity of the lookup
engine. The packet classification phase also requires a field-set
of classification rules as input.

A. DoS Attack: Detection and Prevention with C-GEP

According to Akamai [1] the top 9 Internet (D)DoS threats
are: UDP flood, UDP fragmentation, TCP Syn flood, TCP
ACK flood, CHARGEN, DNS, NTP, RIP and SSDP. The
anomaly detector stage of C-GEP supports the identification of

these 9 volumetric attacks, with varying confidence-levels. The
internal structure of the detector stage consists of a hash table-
based rate-classifier, i.e., it detects and calculates the packet
rate for each destination IP address hash.

The rate-classifier gives an output according to a configurable
packet rate threshold. The next stage implements a disaggre-
gation module that provides the destination IP addresses from
the hash values. Finally, a detector stage calculates protocol-
specific statistics, such as TCP flag statistics, variance of the
source IP addresses, variance of the L4 payload, UDP flood
and fragment statistics, and vulnerable protocol suite statistics,
e.g., DNS, NTP.

To exemplify the operation and performance of the proposed
scheme, we describe the detection of the UDP flood, DNS flood
and TCP SYN flood attacks, respectively.

UDP flood is known as a hard-to-detect L3 attack, since it
can force the denial of service in different manners. In order
to detect UDP floods, C-GEP runs 5 algorithms in parallel,
besides 2 other UDP fragmentation detectors:

1) SRC detection: determines the distribution of source
addresses. This detector will detect the respective pattern
in some cases where the attacker uses millions of spoofed
IP source addresses to throw off common defenses.

2) DST check: checks if there is a valid service on the
destination port. Most UDP floods target random unused
ports to maximize its effectivity. In this case, the target
will reply with an ICMP destination (port) "Unreachable"
message, which can be a good indicator of a flood attack.

3) Volumetric gradient: measures the change of the traffic
sent by the target under attack. The goal of a DoS attack
is to decrease the amount of useful outgoing traffic. E.g.,
the sharp increase of incoming traffic and the correlated
(potentially causated) decrease of the outgoing traffic can
be a hint of an attack.

4) RTT estimation: calculates the round trip-time with ping
messages. A successful DoS attack will render the target
unresponsive, thus, the FPGA detector can use a separate
link to send ICMP type 16 messages to determine the
state of the target. This method, however, is a few mag-
nitude orders slower than the rest; hence the detector will
abort the test if the other algorithms yield a conclusive
result before the completion of the RTT evaluation.

5) Statistical assessment: checks the traffic data variance. As
anecdotal evidence shows, many attacks clone the same
packets over and over, often to minimize the resource
usage of the attacker. We include in Alg. 1 a pseudo-
code of this algorithm since it was also proven effective
against certain botnet/hacktivist tools.

DNS flood, our second example, is one of the most common
type of reflection attacks. Our approach was to consider every
unsolicited DNS response as part of an attack. We monitored
the number of DNS requests and responses for each endpoint.
If the number of responses exceeded the number of requests
by a defined safety margin, the detector signals the attack.
False negative detection is very unlikely for this threat type.



Algorithm 1 Pseudo-code snippet from the UDP flood detec-
tion module. After activation, the detector captures the first
200 packets with a destination IP address that appears under
unusually heavy load. The first four bytes of the payload is
used to create a 8-bit XOR checksum that is stored in a byte-
array. Afterwards, the mean and variance of the checksums are
calculated. If the variance is 0 or smaller than a preset limit,
then we have a good indicator of an UDP flood attack.
1. for a = 0 to 200
2. checksum[a] = pkt_payload[0] xor ... xor
pkt_payload[3];
3. m = 0; var = 0;
4. for a = 0 to 200
5. m += checksum[a];
6. m = m/200;
7. for a = 0 to 200
8. var += (checksum[a]-m)*(checksum[a]-m);
9. return var/200;

If spoofed DNS requests are coming from outside the DCN
they won’t be routed to the detector. Due to the common DCN
security policy spoofed messages originating internally from
the datacenter are blocked on the local access switch.

Finally, for our third attack, i.e., the SYN flood detection
consists of two algorithms: (1) one monitors the TCP flags
of the suspicious flows, and (2) another one verifies the source
addresses of the SYN messages. If the ratio of incoming SYN to
ACK surpasses a certain threshold we register it as an attack. (2)
monitors the variance of the source addresses of the incoming
SYN messages looking for anomalies such as multiple copies
of a SYN message coming from a single source.

Thus far our FPGA-based detection has been tested in the
wild with real, live traffic of UDP flood, UDP fragmentation,
DNS flood and SYN flood attacks. Each of the FPGA modules
(i.e., packet parser, flow classifier and anomaly detector) could
process at full 100Gbps. The enhanced SDN functionality of C-
GEP could support multiple Tbps switches concurrently as long
as their aggregated mirrored traffic does not exceed 100Gbps.
Since a minimum-sized Ethernet frame fits into one 512-bit
word, the pipeline stages must accept in every clock cycle a
new incoming packet, at 100Gbps. Hence a processing speed of
1.5x108 PPS in each of the 4 stages. The clock within the FPGA
device is limited to a few 100s MHz. A realistic upper limit
is ca. 400MHz. This constraint is determined by the divided
FIFO and cascadable Block RAM layout, besides the latency
of the internal signal paths. The latter depends on the signal
routes between the allocated physical elements. Accordingly,
the width of the datapath is the primary design factor for
FPGA-based packet processing at 100Gbps and above. Another
performance factor is the physical resource requirement of the
overall design. A reconfigurable chip has a given number of
simultaneously usable logical elements, which sets a limit to the
size, functionality and complexity of the FPGA implementation.
The hardware resource requirements of the pipeline stages are
detailed in Table II.

TABLE II
RESOURCE REQUIREMENTS FOR THE XILINX XC6VHX255T MODULES.
1ST NUMBER IS THE 100GBPS ETHERNET MAC, PACKET PARSER AND

FLOW CLASSIFIER, 2ND NUMBER IS THE ANOMALY DETECTOR.

SLICE LOGIC USED PRESENT UTILIZATION

Slice Registers 70646 /
13518 316800 22% / 4%

Slice LUTs 46208 /
16223 158400 29% / 10%

Occupied Slices 19280 /
6909 39600 48% / 17%

RAMB36E1/
FIFO36E1s 99 / 43 516 19% / 8%

RAMB18E1/
FIFO18E1s 61 / 0 1032 5% / 0%

TABLE III
ATTACK PATTERNS USED FOR VALIDATION AND PLATFORM SETUP

Attack #1 Attack #2 Attack #3
Attack UDP flood DNS flood SYN flood
Mirror 1:1 N : 1 N : 1
Duration 10 minutes 10 seconds 10 seconds
Replay tool DPDK 10GED FPGA 10GED FPGA
Traffic mixing HW SW SW
Attack Tput 8+ Gbps 7-8 Gbps 300-500 Mbps
Truncation 64 bytes 96 bytes 96 bytes

VI. EXPERIMENTAL RESULTS AND DISCUSSION

In order to validate our solution of a real-time SDN monitor-
ing for security, we have tested it against real-world traffic with
small-scale DoS attacks. The main attack occured in August
2016 and targeted the network of the National Information
Infrastructure Development Institute (NIIFI) in Hungary, which
provides internet access to academic and research institutions.
Our data comes from lossless packet captures from a mirror of
a 10Gbps link transfering general internet traffic, i.e., a North-
South link of a small datacenter. The packets are truncated and
all addresses have been anonymized for privacy.

We implemented a replay tool based on Intel DPDK [27] to
support in-house testing with the collected data. The tool re-
plays the packets according to their timestamp with an accuracy
better than 3.5 microseconds for 99.99% of the packets, while
also padding the truncated packets to their original size. It is
about 5x faster than tcpreplay v3.4.4 with libpcap 1.7.4.

Our setup consisted of an Intel RRC switch with two hosts
acting as traffic generators (replayers) and one C-GEP in the
feedback loop. One of the traffic generators was replaying the
traffic of normal operation, while the other overimposed the
captured attack traffic. The traffic generator hosts were con-
nected to single 10Gbps ports, while the C-GEP was connected
to an aggregate of 4x 10Gbps monitoring ports1 to receive the
mirrored traffic. One management port was used to close the
local feedback loop implementing the fast loop from Fig. 1.

A. Attack characteristics

Table III summarizes the attack patterns used for validation.
1) UDP Flood Attack: The captured data refers to a UDP

flood attack, where 41 different sources attempted to flood a

1We used 4x10 Gbps, due to a lack of matching 100 Gbps transceivers at
the time of the experiment.
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Fig. 4. Incoming packet rate and throughput for all destinations in the first 5
seconds of the UDP flood, ranked by packet rate.

specific target within the NIIFI network with high rates of
minimally-sized UDP datagrams. The attack did not target the
network infrastructure (which had enough capacity to handle
the traffic), but rather intended to cause the target host to
be overloaded in processing the high incoming packet rate,
possibly aiming at disrupting its service. The capture lasted for
approximately 10 minutes. The data was captured from a 1:1
mirror port as the subset of the switch global mirror, because
the concept of global mirroring was not yet deployed at the
time of the attack. Fig. 4 shows the average incoming packet
rate and throughtput for each destination during the first 5 sec.
of the attack. The attack target is the host with the highest
packet rate, ranked first among all destinations in this respect.
The attack succeeds at overloading this host with a packet rate
87x higher than the next in the ranking order of packet rates.
There were approx. 8.4x higher traffic volume targeted to the
attacked host than the second most loaded host.

2) DNS Flood Attack: This attack was carried out against one
of the hosts inside the NIIFI network, through DNS and NTP
reflection amplification attacks. This attack was most likely
carried out with a botnet, since the capture contained ICMP
messages appearing to be botnet control signals. The pattern
consists of 10 sec. of attack spikes, in which the attacker ramps
up the traffic to 7-8Gbps for 3-10 sec. per attack burst. The
attacker stops the transmission for 30-60 sec. between bursts.
Since the first, 3 sec.-long spike was a pure DNS flood, we
have reused it for testing the anomaly detector. We have mixed
the attack pattern with ca. 10 sec. of normal traffic captured
from the same link.

3) SYN Flood Attack: The captured SYN flood attack lasted
for cca. 15 minutes. The data rate of the attack was around
500Mbps, sometimes dropping to 200-300Mbps. The attacker
used millions of spoofed IP addresses. The first 5 sec. of the
attack were mixed with 10 sec. of normal traffic: this pattern
served as the 3-rd type of attack in our tests.

B. Implementation Details and Challenges

In order to mitigate the attack, the FPGA-based SDN con-
troller implements filtering in the switch, using the Access

Algorithm 2 The policer update service running on the switch,
accepting commands from the FPGA
Main steps:
1. while running
2. wait for command
3. if ratelimit command received
4. add rule
5. send Ack
6. if delete command received
7. delete rule
8. send Ack

add rule:
1. if rate != 0
2. add policer
3. add police rule to
ACL
4. if rate == 0
5. add drop rule to ACL
6. compile and apply ACL

delete rule:
1. find rule
2. if rate != 0
3. delete policer
4. delete rule from ACL
5. compile and apply ACL

Control List (ACL) and Policer features. The Intel RRC switch
has 32 TCAM slices, each containing 1024 entries of 40-bit
maskable keys. A configurable number of TCAM slices (50%
by default) are reserved for L3 routing and other functions,
while the rest are used to construct ACL rules. Logically the
TCAM slices can be concatenated (i) in parallel to implement
rules matching on multiple protocol fields, or, (ii) in serial to
allow fitting more rules than the length of a TCAM slice into
one ACL. Besides many other actions, the matching rules can
drop a packet or send it to a policer. The switch has a total
number of 9216 policers that can be used as simple counters,
or as rate limiters, using a token bucket algorithm.

Here our FPGA worked as a signature-based anomaly de-
tector and closed loop autonomous mitigator. However, instead
of going through a centralized controller as in a typical SDN
design, our solution can send “Drop” or “Limit” ACL rules
directly to a service running on the switch’s CPU, to minimize
the loop lag. The service on the switch creates or deletes the
rules and policers in the ASIC and then acknowledges back to
the external FPGA (Alg. 2). Creating a Drop rule only adds an
ACL rule, while creating a Limit(-ing) rule needs also a Policer.
Inserting a rule is done in 2 or 3 steps. In case of a Limit rule,
the first step is to allocate a Policer, next is adding the rule to
an ACL, and finally invoking the ACL compiler to apply the
changes. Rules are also provided with a timeout mechanism, so
that they can be renewed for as long as needed and essentially,
automatically dropped as soon as the attack ends.

C. Performance and discussion

The detector performance was measured inside the FPGA
with an added module. The measurement module was tracking
the time between the first attacking packet and the detection
signal. The detection time depends on the rate of the attack
and the attack type, as well as the internal state of the detector
– which adds a small variance to the detection-time. Table IV
presents peculiar values for 20 tests of each attack.

During the verification of the the different intrusion detection
algorithm implementations, the effects were visualized as Fig. 5



TABLE IV
DETECTION TIME STATISTICS

Value DNS Flood type attack SYN flood type attack
Min. [us] 637 3925
Max. [us] 1123 4962
Avg. [us] 890 6284

Fig. 5. Detection of a DNS attack: the attack lasted for cca. 4 seconds;
detection was in the ms range.

shows for the DNS case. Our experiments show, that in case of
an empty ACL, adding a filtering rule nondisruptively (Drop,
based on source IP and L4 protocol and source port) takes
between 400 us and 2 ms. In case of an ACL with 8K+ rules,
it can take up to 35 ms. This is a lot faster than typical reaction
methods that may take seconds or longer. The same operation
with Limit (instead of Drop rules and independent policers) for
each of the 8K rules takes altogether 95 ms.

The difference in the operational time may arise from the
ACL compiler. Technically it could reuse the results of the
previous compilation without trying to optimize, and it could
be just as fast for a nearly full ACL as for an empty one. The
current switch version, however, cannot seemingly optimize
anything in nondisruptive mode, so we conjecture that the
full recompilation with optimization is expensive. A possible
solution for reducing the effect of the compilation overhead is
batching, in which several outstanding insert/remove requests
would be collected over a small period of time, and all changes
would be applied at the same time, reducing the need to
recompile to only once per batch. Fig. 6 graphically shows
the results of the experiment utilizing Drop rules on the local
feedback loop.

Although modern switches often have some built-in SYN
flood and/or ICMP flood protection, we argue that when used
for security, the local feedback loop complements and extends
these primitives – adding the capability to detect any type of
DoS attack with low reaction times and flexibility. The benefits
of using an FPGA in the local feedback loop become thus
evident in reconfigurability, while providing for finely-tuned
and low-latency reactions.

VII. CONCLUSIONS

We addressed the new challenges of machine-driven cyber-
attacks, designed to overwhelm the capabilities of today’s

Fig. 6. Throughput and number of attack flows during the attack to NIIFI.
Top: total volume of traffic (in green) and the volume flagged as attack (in red).
Middle: production traffic that remains after filtering. Bottom: the number of
detected attack flows. The attack has no visible impact to the production traffic
because the reaction is much faster than the time resolution of the graphs.

standard security systems. Contrary to the current security
practice, we aim to autonomously detect and mitigate in real-
time also the ephemeral attacks directed at the human security
operators. The average performance of our approach is 5-7
orders of magnitude higher than current solutions: (sub-)ms-
scale vs. hour-scale – based on the automatic attack mitigation,
instead of the typical human-in-the-loop.

Our first solution targets the most common 9 network attacks;
it is universally compatible with most modern Tbps-class
switches, needing neither DPI, nor the encryption keys. We
prove that building an autonomous machine-driven anomaly
detection and attack mitigation system for datacenter networks
is feasible, and accordingly we designed a novel NFV that
can uniquely and effectively counteract also the high-frequency
ephemeral anomalies. For implementation at 10-100Gbps port
speeds, we presented a practical solution to reconcile the
performance-cost merits of the modern Tbps-class commod-
ity switching ASICs, with the flexibility of native SDN/OF
switches. This also shows that our scheme scales up with the
N:1 mirror designed for the online monitoring of multiple
100Gbps ports.

We used 3 real-world attacks to prove the speed and accuracy
of our new autonomous feedback loop – here implemented as
an SDN-based online security application. Such attacks were
detected in real-time and automatically mitigated within 430us
up to 3ms – without loading the switch control plane and CPU,
nor exceeding 60% of the FPGA utilization – and without
human operator supervision. We argued that such SDN/NFV-
enhanced switching fabrics could become essential for securing
the next generation of SDNs for Cloud and datacenters.
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