
ENDEAVOUR: Towards a flexible
software-defined network ecosystem

Project name ENDEAVOUR
Project ID H2020-ICT-2014-1 Project No. 644960

Working Package Number 3
Deliverable Number 3.2

Document title Design and Final Requirements of the Monitoring Platform
Document version 0.9

Editor in Chief Castro, QMUL
Authors Castro, Antichi, Boettger, Leao, Dietzel,

Bleidner, Uhlig, Kathareios
Date 18/01/2016

Reviewer Bleidner, Dietzel, DE-CIX
Date of Review 18/01/2016

Status Public

WP3 / D3.2 ENDEAVOUR Version 0.9

Revision History
Date Version Description Author

01/07/15 0.1 Preliminary draft Castro

02/07/15 0.2 Monitoring primitives Antichi, Castro

23/12/15 0.3 First complete draft Castro, Antichi,
Boettger, Leao,
Dietzel, Bleidner,
Uhlig, Kathareios

04/01/16 0.4 Merge of small and large IXP sec-
tions

Castro

08/01/16 0.5 Monitoring limitations Bleidner, Dietzel,
Bruyere

14/01/16 0.6 Final pre-revision changes Castro, An-
tichi, Boettger,
Leao, Dietzel,
Bleidner, Uhlig,
Bruyere, Gusat,
Kathareios

15/01/16 0.7 Conclusions and executive summary Castro, Bruyere

18/01/16 0.8 Review Bleidner, Dietzel

22/01/16 0.9 Addressing of review comments Castro, Uhlig

H2020-ICT-2014-1 Project No. 644960 2

WP3 / D3.2 ENDEAVOUR Version 0.9

Executive Summary

ENDEAVOUR’s mission is advancing the Internet interconnection model to
a new paradigm through the introduction of SDN technology at one of the
central elements of the Internet architecture, the IXP. The implementation
of novel SDN capabilities is closely intertwined with the monitoring abilities
at the IXP. While the previous deliverable D.3.1 [8] surveyed the monitoring
needs relevant for the new capabilities that SDN brings to the IXP, this
document continues that work by closely looking at the current monitoring
practices and technologies, exposes its limitations and proposes a monitoring
architecture for the ENDEAVOUR project.

In view of the drawbacks of legacy switch monitoring and the limitations
of the existing instances of SDN switches, we propose a monitoring archi-
tecture that is independent of the switching infrastructure. Our monitoring
architecture relies on a monitoring controller that coordinates lightweight
middleboxes, which in turn complement the SDN-switch monitoring capa-
bilities.

This deliverable analyzes the main functionalities that the middleboxes
will offer and discusses the next stages in which we will work toward inte-
grating all the elements of the monitoring architecture under the umbrella
of a controller.

H2020-ICT-2014-1 Project No. 644960 3

WP3 / D3.2 ENDEAVOUR Version 0.9

Contents

1 Introduction 5

2 State-of-the-art in IXP monitoring 5
2.1 Passive monitoring . 6

2.1.1 Simple Network Management Protocol 6
2.1.2 Packet sampling - the sFlow approach 7
2.1.3 Flow counters - the NetFlow approach 8
2.1.4 Port mirroring . 9

2.2 Active monitoring . 10
2.3 Future directions in monitoring 10

2.3.1 Quantized Congestion Notification 10
2.3.2 OpenFlow Switches 13

2.4 Limitations . 14

3 ENDEAVOUR monitoring architecture 16
3.1 Monitoring requirements . 18
3.2 Monitoring middleboxes . 22

4 Outlook 24

5 Acronyms 25

List of Tables

1 Monitoring requirements and middleboxes per use case 21

List of Figures

1 The closed loop of the QCN standard 11
2 QCN’s sampling probability 12
3 CNMS heatmaps . 13
4 Monitoring architecture . 20
5 Architecture for OSNT traffic monitoring subsystem. 23
6 Architecture for OSNT traffic generation system. 24

H2020-ICT-2014-1 Project No. 644960 4

WP3 / D3.2 ENDEAVOUR Version 0.9

1 Introduction

Monitoring is a critical functionality in a complex system such as a large-
scale Internet eXchange Point (IXP). As the previous deliverable demon-
strated [8], Software Defined Network (SDN) introduces both challenges and
opportunities and it is critical at enabling the use cases already discussed.
Additionally, because the design and implementation phase will need feed-
back, for instance to identify bugs, monitoring will be a critical element
in the building process leading to the final prototype. For instance, active
monitoring for debugging will be an extremely useful functionality.

The current practice of scheduled monitoring typical of today’s networks,
does not match the needs of the dynamism required by the current Inter-
net and do not meet the challenges posed by SDN. However the existing
commercial SDN switches fall short of fulfilling the potential of SDN. The
hardware and software limitations of available SDN switches are a challenge
for the monitoring needs of ENDEAVOUR. As developing our own switch-
ing hardware is beyond the scope of the project, we will rely on existing
commercial SDN switches and complement them with flexible lightweight
monitoring middleboxes. Our monitoring infrastructure will hence rely on
SDN switches and middleboxes coordinated by a controller.

This decoupling of the switching and the monitoring infrastructure al-
lows for more comprehensive monitoring capabilities without imposing limi-
tations on the switching fabric, enables a wide range of active measurement
capabilities, and makes the monitoring and switching infrastructures more
capable to adapt to novel needs stemming from the dynamic nature of the
Internet.

This deliverable describes the basic monitoring architecture, its elements,
and sets the stage for the future work. The most immediate task of the
future work will consist in developing the monitoring controller to integrate
the different elements of the monitoring system.

2 State-of-the-art in IXP monitoring

Whether large or small, IXPs typically rely on passive monitoring. Whereas
small and medium IXPs focus on essential monitoring because their human
and technical resources are more limited, large IXPs usually have a more
comprehensive monitoring effort. To have a more comprehensive monitor-
ing, IXPs sometimes complement its passive capabilities with limited active
monitoring.

H2020-ICT-2014-1 Project No. 644960 5

WP3 / D3.2 ENDEAVOUR Version 0.9

Monitoring at small and medium IXPs typically offers supervision of
performance degradation as well as statistics and visualization of the traf-
fic exchanged. Recent initiatives such as IXP-Manager1, developed by the
medium sized IXP, Ireland Internet Exchange Point (INEX)2, help small
and medium IXP to deploy all the necessary well-known monitoring.

Large IXPs such as the German Commercial Internet Exchange (DE-CIX)
or Amsterdam Internet Exchange (AMS-IX) operate huge Ethernet based
networks with a peak traffic volume of up to five Tbps. Those large IXPs
offer strict Service-Level Agreements (SLAs) to ensure a guaranteed level of
service for their members. Holistic monitoring capabilities including each
component of their large scale network as well as additional components
such as the route server or Domain Name System (DNS) server are a key
component in ensuring the fulfilment of the SLAs.

With the growing number of members and port speeds, large IXPs have
been pushed to a distributed network infrastructure. A single switch does
not satisfy the scalability and bandwidth requirements anymore. With the
rise of 100 Gbps port speeds, IXPs have also moved from copper cables
to a complete optical infrastructure. The central monitoring system also
gathers operational information and counters for those optical components
interconnecting the distributed switching fabric. Especially, the current light
levels of the transceivers must be checked periodically for early detection of
possible failures of the optical transmissions.

In the rest of this section we discuss the monitoring standards and tools
common at IXPs nowadays.

2.1 Passive monitoring

2.1.1 Simple Network Management Protocol

Most of the IXPs rely on passive monitoring using Simple Network Man-
agement Protocol (SNMP). SNMP [7] is a standardized protocol used for
collecting and organizing operational switch data and per port information
produced by monitoring tools. SNMP gathers information of the coun-
ters per port (bits and packets), port status (up/down), Central Processing
Unit (CPU) load, memory utilization, temperature, etc. To gather infor-
mation about the current utilization of each link counters of member and
backbone interfaces can be periodically polled as well. All that information
is centrally gathered into a monitoring database. A central database allows

1https://github.com/inex/IXP-Manager/wiki
2https://www.inex.ie/ixp/index/about

H2020-ICT-2014-1 Project No. 644960 6

https://github.com/inex/IXP-Manager/wiki
https://www.inex.ie/ixp/index/about

WP3 / D3.2 ENDEAVOUR Version 0.9

the IXP operator to deploy so-called triggers on the datasets. Triggers can
conduct multiple individual values and evaluate them. If a value exceeds a
predefined threshold, the monitoring system can issue certain actions, such
as sending a notification to an engineer on-call.

Error counters are also polled for an early link failure detection. The
same applies for link aggregation groups, which are widely used within an
IXP network to scale both backbone and member port capacities.

To provide supervision information to the IXP operator or the IXP mem-
ber, a variety of SNMP client tools exist. These (graphing) tools are used
by most IXP as they are combine in a single view the service performance
with the traffic statistics. The main SNMP graphing tool is the Multi Router
Traffic Grapher (MRTG). MRTG can be easily integrated on the public IXP
website to show the total volume of traffic exchanged by the IXP fabric.

2.1.2 Packet sampling - the sFlow approach

The sFlow [18] standard provides switches with the capability to passively
measure Layer 2 to 4 traffic [2].

With sFlow, monitoring is carried out in the form of packet sampling [17].
This effectively means that one out of every N packets on each input port is
captured and used for extracting measurements on the total traffic flowing
through the switch. A copy of the captured packet is handled to the control
plane CPU, which creates a datagram with the header information and
extra metadata. This is in turn forwarded to the monitoring controller via
the control plane. The extra metadata information includes the switch’s ID,
the sampling rate used when the packet was captured, the output port(s)
selected, along with associated port counters. This way, both flow and
counter monitoring is performed with the same method.

The rate of samples created by sFlow equals the packet rate divided by
N . Thus, giving the monitoring controller the ability to probabilistically cal-
culate the number of bytes and packets per flow through simple scaling [17].
Assuming fixed packet sizes, the expected error of simple scaling is quan-
tifiable and has been calculated to be inversely proportionate to the square
root of the number of samples gathered for a specific flow. More specifically,

the error (in percent) can be estimated as percent error ≤ 196×
√

1
s , where

s is the number of samples. Thus, in order to decrease the estimated error,
the number of samples per flow has to increase. This can be done in one
of only two ways: by increasing the estimation time window, or increasing
the sampling rate. The first one is less practical, because it would increase
the latency of measurements, violating the real-time monitoring principle

H2020-ICT-2014-1 Project No. 644960 7

WP3 / D3.2 ENDEAVOUR Version 0.9

needed in modern networks. The ability to increase the sampling rate is
however one of sFlow’s largest drawbacks. As the switch CPU is tasked
with creating the monitoring datagrams, it can be easily overwhelmed on
switches with a large number of ports by a high sampling rate. In fact,
studies have shown that even on state-of-the-art switches the sample rate
peaks at approximately 350 samples per second [22].

Packet sampling as a monitoring practice has several advantages: allows
monitoring of both flow and port counters at the same time, scales well with
wire speed owing to its probabilistic component, and is supported by multi-
ple manufacturers and monitoring systems3. However, its main drawbacks
are its lack of programmability and its dependence on the switch CPU (in
the sFlow embodiment), which in consequence cannot maintain the moni-
toring throughput needed for real-time measurements.

2.1.3 Flow counters - the NetFlow approach

NetFlow is a de facto industry monitoring standard (whose standarized ver-
sion is IP Flow Information Export (IPFIX)) initially developed by Cisco
to provide switches the ability to collect statistics about individual Layer
3-4 flows. Most commonly, a packet is identified as belonging to a specific
flow via its 5-tuple (source and destination Internet Protocol (IP) address,
source and destination port number and IP protocol number).

Implementing NetFlow in hardware requires a dedicated Content-Addressable
Memory (CAM) acting as a flow cache to track information about specific
flows. As each packet arrives, its 5-tuple is checked against the entries of
the CAM, and if it matches any of them, the entries statistics are updated.
In the opposite case, a new entry is created for the new flow. Information
is extracted from the CAM cache in one of 4 occasions:

• A Transport Control Protocol (TCP) packet with a FIN or RST flag
indicates that the flow is completed.

• A flow idle timer expires.

• A hard timeout fires, indicating that an update for a flow should be
extracted even though it is still active.

• The cache is full and a new entry needs to be written.

When one of these conditions hold, the switch sends a NetFlow record includ-
ing the flow’s extracted measurements to the monitoring controller through

3See: http://sflow.org/products/index.php

H2020-ICT-2014-1 Project No. 644960 8

http://sflow.org/products/index.php

WP3 / D3.2 ENDEAVOUR Version 0.9

the control plane. The measurements include information such as number
of bytes and packets, timestamps for the flow’s start and finishing times,
Layer 3 headers, Border Gateway Protocol (BGP) routing information,
Multiprotocol Label Switching (MPLS) labels (version 9 only), etc.

From version 5, NetFlow also provides a “sampled NetFlow” mode [9]
to reduce the overhead of monitoring on the switch. In this mode NetFlow
records are created based only on 1 in N packets that arrive to the switch
instead of every packet.

While NetFlow is a scalable solution to flow monitoring, in practice it
cannot be utilized for real-time monitoring as it is not programmable and
exclusively push based. Timeouts are specified at a granularity of seconds
and hence NetFlow provides little to no latency advantage over the low
polling rates of OpenFlow’s per-rule counters [12, 21].

2.1.4 Port mirroring

Port mirroring is a mechanism for monitoring and data analysis supported
by most modern switches. It entails the capability to copy all traffic coming
through a subset of the switch’s ports and forward it to one or more moni-
toring ports for telemetry and data analysis. Therefore, this mechanism can
be handy in monitoring the data plane of the IXP’s switches.

This simple mechanism can provide information on the monitoring con-
troller very fast (on line rate), as it requires almost no effort on part of
the switch. The switch CPU is not involved in the mirroring process, other
than performing the configuration specified by the network management en-
tity and as such all filtering, information extraction and data processing is
delegated to the monitoring controller on the other side of the monitoring
port.

Passive monitoring with port mirroring has been proposed by Rasley et
al. [19]. In this approach, multiple (or all) switch ports are mirrored to a
single or a small number of monitoring ports. Naturally, the monitoring
ports capacity will be exceeded and thus mirrored packets will be dropped.
This way, each mirrored packet has a probability to be dropped and the
ones that are actually forwarded to the monitoring entity can be consid-
ered to be sampled from their respective flows. The resulting monitoring
mechanism has similar capabilities to packet sampling with a variable (and
not controllable) sampling rate, which however always runs at wire speed
and does not depend on the switch CPU, resulting in a 10x speedup over
sFlow’s monitoring speed [19]. The downside of port mirroring is its price
in switch ports that need to be reserved for monitoring. As the number of

H2020-ICT-2014-1 Project No. 644960 9

WP3 / D3.2 ENDEAVOUR Version 0.9

ports per switch and the throughput of links increase, maintaining a rea-
sonable packet sampling rate would require increasingly many ports of the
switch to be used for monitoring.

2.2 Active monitoring

IXPs frequently complement their passive monitoring capabilities with lim-
ited active measurements. For instance, DE-CIX utilizes Smokeping [20]
and AMS-IX relies on ITU-T Y.1731 [14, 1] to send periodic ping requests
to each device within the IXP network, including switches, route servers,
and member routers. These tools enable the IXP operator to get insights in
latency information across the network and allows the early identification
of possible bottlenecks, either on the network layer or at a host level (e.g.,
router server). While these solutions address some of the limitations of to-
day’s monitoring their precision is rather low as the measurements are in
the order of milliseconds (ms) far from the high speed monitoring goals of
ENDEAVOUR.

2.3 Future directions in monitoring

We have presented so far the most prominent state-of-the-art monitoring
methods used for extracting information at IXPs with legacy switches. We
now look at the future opportunities in monitoring that new technologies
are enabling. In particular we look at how can the Quantized Congestion
Notification (QCN) standard be repurposed to achieve real-time monitoring
(Section 2.3.1) and how can ENDEAVOUR use SDN switches to achieve its
goals (Section 2.3.2).

2.3.1 Quantized Congestion Notification

The QCN standard (IEEE 802.1Qau) [3, 4] has been developed to provide
congestion control at Layer 2, as a part of the IEEE Data Center Bridging
Task Group’s efforts. A congestion control scheme aims at signalling sources
that send traffic through a network bottleneck (filled up / congested network
buffer), before the congestion spreads and creates secondary bottlenecks.

QCN achieves that by moving congestion detection as close to the over-
subscribed link as possible: the Congestion Point (CP), i.e. the switch
whose queue(s) are congested, is responsible for signalling the congestion’s
source(s) (Fig. 1). As such, the switch is responsible to monitor its own
output queues and to detect whether any of them is becoming congested.
For each queue, the switch calculates a congestion measure Fb and with a

H2020-ICT-2014-1 Project No. 644960 10

WP3 / D3.2 ENDEAVOUR Version 0.9

© 2012 IBM Corporation

Occupancy Sampling for Terabit CEE Switches

28 Hot Interconnects 20, Santa Clara, 23. Aug. 2012

end
node

s
w

it
c
h

NIC RL

s
w

it
c
h

s
w

it
c
h

s
w

itc
h

NIC

NIC

CNM

C
N

M

s
w

it
c
h

s
w

it
c
h

NIC RL

s
w

it
c
h

s
w

it
c
h

s
w

it
c
h

s
w

it
c
h

s
w

itc
h

s
w

itc
h

NIC

NIC

CNM

C
N

M

QCN Congestion Management Framework (2 of 2)

)()()(off tqwtqtFb

eqoff)()(Qtqtq

old)()(qtqtq

Congestion point (CP) calculations

 Position (queue length offset)

 Velocity (queue length rate of change)

 Feedback value

(*) Fb(t) > 0: No double negation in this paper

(*)

CPRP

end
node

end
node

Figure 1: The QCN standard creates a closed loop: when a CP is detected,
the end-nodes that participate in the congestion (the RPs) receive negative
feedback in the form of CNMs and decrease their traffic based on the RL
algorithm.

probability depending on the severity of the congestion, randomly samples
an incoming packet and sends the value of Fb back to the packet’s source
inside a Congestion Notification Message (CNM) (Fig. 2). The value of Fb
is calculated as follows (quantized to 6 bits): Fb = −(Qoff +wQδ), where w
is a constant, Qoff is the difference between the queue’s current occupancy
and a predefined threshold (Qeq, usually ≈ 20%), Qδ is the derivative of
the queue’s occupancy, calculated as the difference of the current occupancy
level and the level at the time that the previous notification was created.
The resulting value of the congestion measure captures a combination of the
queue size (Qoff) and the queue size rate of change (Qδ), with a negative
value indicating oversubscription on the buffer, the link, or both. The sam-
pling rate in turn depends on the value of Fb. It equals 0 for positive Fb
values, varies between 1% and 10% while Fb has close-to-0 negative values,
and is constant and equal to 10% for even smaller values. Along with the
Fb value for the queue, CNMs also contains a leading chunk of the sampled
packet with its header, that is used by the receiver to determine the flow
causing the congestion. The receiver of a CNM (the Reaction Point, RP)
implements a rate limiting algorithm that decreases its sending rate based
on the received feedback (the Fb value) and increases its rate voluntarily af-
ter a predetermined time interval to probe the network for extra bandwidth.
The details of the Rate Limiter (RL) algorithm are beyond the scope of this
deliverable, but are very comprehensively presented in [4].

H2020-ICT-2014-1 Project No. 644960 11

WP3 / D3.2 ENDEAVOUR Version 0.9

QCN CP Mechanism

A) On packet arrival:
Oueue_length = queue occupancy level
Queue_delta = Queue_length – Queue_old
Queue_offset = Queue_eq – Queue_length

FB = feedback (Queue_delta, w, Queue_offset) (FB = Queue_offset + w * Queue_delta)
Ps = F(FB) according to QCN sampling probability function
b = rand() / RAND_MAX (uniformly distributed in [0,1))
If (b > P) then sample packet

Figure 2: For each queue, a value Fb is calculated, depending on both the
current occupancy levels (Qoff) and rate of change of these levels (Qδ). In
the case that this value is negative, incoming packets are sampled with the
sampling probability depending on the Fb value and a CNM is send to the
reaction point.

Repurposing QCN. QCN’s principles have the potential to be very
effectively repurposed for monitoring while reusing already available hard-
ware of modern switches and surpassing the limitations of state-of-the-art
methods. Reasons for that: all of the network’s queues are simultaneously
monitored, in sub-us speeds (possibly with the arrival of every packet), the
CNMs travel through the network in the data plane (at wire speed), and also
contain most of the data needed for sufficiently monitoring a switch: queue
size, the rate of change of the queue size, and enough header information to
infer the flow to which the packet belongs. Another advantage of QCN in
monitoring is that it is scalability, as the notifications/monitoring data are
by construction distributed to the edge of the network.

Although QCN was designed for congestion management, in the moni-
toring context it can be adapted for use in the absence of a closed loop, i.e.,
without RP rate limiters and without a TCP-like primal-dual algorithm. In-
stead, the CP sampling process could be substantially simplified to increase
in speed, while also the subsequent results injected as new packets (CNMs)
can be pre- and post- processed and aggregated, e.g., with filtering and com-
pression in the switch (or in an offload engine). This can contribute to the
construction of a coherent bitmap - or heatmap of the current state of all
output queues in the network (Fig. 3), adding to the network’s centralized

H2020-ICT-2014-1 Project No. 644960 12

WP3 / D3.2 ENDEAVOUR Version 0.9

© 2014 IBM Corporation 4 IBM Confidential

zMon

§  Take space- and time-coherent snapshots of the network

 à Snapshot = heatmap = traffic trace = XY representation of (all*) switch queues

 * Spatial sub-sampling: Global ‘image’ reconstruction from sparsely sampled queues

§  Build ‘movies’ of sequential snapshots

 à Capture congestive events at Layer-2 and correlate with workload phases

Figure 3: CNMs can be used to make perceptual “heatmaps” of the state of
the Layer 2 network: each pixel of the heatmap image represents the state
of a single output queue, with its color encoding the respective queue size
(Qoff) and queue size rate of change (Qδ).

SDN controller’s global view of the network state. Thus, the SDN con-
troller is better equipped when making purposeful decisions in fields beyond
congestion avoidance, namely (but not limited to) load balancing, traffic
engineering and security.

Unfortunately, QCN is not available for monitoring at its current form.
The main obstacle is that notifications are not timestamped and therefore an
accurate representation of the system state is not possible at this moment.
Anghel et al. [5] describe how to solve this problem by synchronizing switches
and adding a timestamp to the feedback. The notifications are then used to
create time-space correlated heatmaps of the network state at the granularity
of 10s of us (simulation only). Another limitation is that QCN operates on
Layer 2, and as such it is hard for CNMs to be routed back to the source
of the sampled packet. A potential solution to this problem would be for
the feedback to not be sent back to the source of the congestion, but to a
predefined, pre-routed set of monitoring entities tasked with aggregating the
monitoring data of the network.

2.3.2 OpenFlow Switches

SDN switches are meant to be programmable by an external controller
through an Application Program Interface (API). The most well-known
SDN API, also known as southbound interface, is the OpenFlow proto-
col [15].

H2020-ICT-2014-1 Project No. 644960 13

WP3 / D3.2 ENDEAVOUR Version 0.9

OpenFlow switches must be able to match many protocols fields from
Layer 2 to Layer 4. Moreover, every flow might be able to keep a record of
traffic counters. This flexibility to combine different protocols fields plus the
flow statistics gives the power to define the granularity level of monitoring.
It is an advantage when compared to the low granular tuple defined by
NetFlow: while NetFlow only allows to monitor IP addresses and transport
ports, OpenFlow enables a much more comprehensive view.

Flow statistics in an OpenFlow network are typically collected by the
controller at operationally defined rates. It raises the interesting possibility
for the controller to react according to the network state. One example is the
detection and handling of Distributed Denial of Service (DDoS) attacks [6].
When a large flood attack is detected by a flow monitoring application, the
controller can change the current flow rules to black hole the attack related
traffic.

While OpenFlow is an elegant solution for traffic monitoring, it might
be limited by the hardware and software of the available switches. Notably,
counting the number of packets and bytes per flow is a costly operation.
For this reason, in the newest OpenFlow specifications, the only required
counter is for the duration of the flow. Packet and byte counters, much
more interesting from a monitoring perspective, are just optional features.

Overall, for performance issues, OpenFlow switches tend to support Net-
Flow and sFlow [13]. One example is the Open vSwitch (OVS), a software
switch that can be used as hypervisor bridges or as the control stack for
hardware switches.

2.4 Limitations

The existing monitoring mechanisms are limited in many regards. The pre-
vious deliverable [8] already exposed some of those limitations focusing on
the monitoring that could not be achieved with legacy switches due to its
conceptual design. Here we continue that work and discuss the main limi-
tations that stem from the current implementations of the state-of-the-art
monitoring at IXPs.

The critical limitations of today’s monitoring in legacy switches are its
lack of programmability and universal deployability, the inability to make
targeted measurements and the restricted capacity to for active monitoring.

The current monitoring methods and tools lack programmability and
hence depend on network operators. The lack of programmability makes
impossible an automatic reaction to network events such as a security threat
or congestion in a peering link. As the current technology is conceptually

H2020-ICT-2014-1 Project No. 644960 14

WP3 / D3.2 ENDEAVOUR Version 0.9

incapable of providing those reactive solutions this feature is practically
impossible in today’s IXPs. Introducing SDN at the IXP is the response of
ENDEAVOUR to that critical limitation.

Additionally, the type of targeted monitoring necessary to enable the
use cases previously described [8] is not possible in the destination based
approach (IP based) of today’s switches. This limitation impedes, for in-
stance, monitoring per physical port, fundamentally limiting the monitoring
of load balancing, traffic engineering, traffic steering or novel peering sce-
narios as discussed in previous deliverables. The SDN ability to look at any
packet field overcomes this shortcoming and allows for targeted monitoring
of the traffic flows.

Besides the proprietary solutions typical of nowadays approach to IXP
monitoring do not enable the universal monitoring capabilities we aim for
due to limited hardware support.

Another fundamental limitation is that today’s network monitoring is
eminently passive. While counter based information statistics are retrieved
very frequently (e.g., every 5 minutes) they just inform of the number of
packets and the distribution of its size. Generally, analysis of the sampled
data is only ex post and requires large storage capacity and processing power
to search through the historical sampled flows. The permanent growth in
IXP’s traffic volumes further exacerbates this problem.

To make things more complex, the monitoring data does not provide a
complete picture of the events taking place within the switching infrastruc-
ture. Firstly, because monitoring relies on sampling, statistical modelling of
the sampled data is necessary. Furthermore, since the data is not compre-
hensively sampled through the switching infrastructure it is impossible to
follow flows or even packets through certain paths in the IXP network.

IXPs frequently complement their monitoring with active measurements
such as smokeping or ITU-T Y.1731 to alleviate the pitfalls of exclusively
passive monitoring (e.g., inability to measure path delays). However despite
of these mechanisms it remains challenging to measure accurate delays of
individual paths. Furthermore, active monitoring will not only be valuable
in implementing specific use cases, ENDEAVOUR will strongly depend on
active monitoring capabilities during the development phases in order to
debug the network. The existing solutions unfortunately do not have the
granularity necessary for that goal.

While the future directions in IXP monitoring described in Section 2.3
are promising they have also substantial shortcomings. To date, QCN mon-
itoring has not been implemented in practice due to the limitations earlier
described. Adding these capabilities remain very challenging within the

H2020-ICT-2014-1 Project No. 644960 15

WP3 / D3.2 ENDEAVOUR Version 0.9

ENDEAVOUR timeframe and budget, given:

1. The lack of QCN, sFlow or other sampling mechanism in the cur-
rent generation of OpenFlow/SDN switches such as Corsa [11] and
NoviSwitch [16].

2. The absence of sampling methods in current OpenFlow versions (sam-
pling requiring both a new OpenFlow framework and hardware offload
support).

3. The limited SDN/OpenFlow support in the dominant Ethernet fab-
rics today, e.g., based on Broadcom’s Trident Application-Specific In-
tegrated Circuit (ASIC) family [10].

On the other hand, while the SDN concept has a huge potential exist-
ing commercial SDN switches are still in an early stage and the hardware
support of some of the functionalities is still rather limited. Due to time
frame limitations and the inherent complexities of hardware development,
developing an ENDEAVOUR switch that complies with all our requisites
is beyond the scope of the project. Nevertheless, through our interactions
with the industry we do expect to influence hardware development so it will
consider some of our desired functionalities. While those enhancements are
unlikely to take place during the development phases of the ENDEAVOUR
project, we believe they will benefit the networking community as a whole.

3 ENDEAVOUR monitoring architecture

To match as closely as possible the monitoring requirements previously de-
scribed [8] we need a highly flexible monitoring scheme capable of both
active and passive measurements and that can be supported everywhere.

In achieving this, we will need to depart from the state-of-the-art mon-
itoring as described in the previous sections to overcome its limitations,
e.g., closed-source/proprietary solutions, high costs, lack of flexibility, pro-
grammability, etc..

This section presents ENDEAVOUR basic monitoring architecture and
discusses how our future work will integrate the different elements that com-
pose it. Figure 4 depicts the schematic architecture of our monitoring plat-
form in the broader architecture of ENDEAVOUR. The basic monitoring
architecture includes three elements: an SDN switch, light middleboxes and
a controller. The light middleboxes complement the monitoring capabilities
of the SDN switch, whereas the controller coordinates them both, receives

H2020-ICT-2014-1 Project No. 644960 16

WP3 / D3.2 ENDEAVOUR Version 0.9

information from the route server, and interacts with the ENDEAVOUR
controller. The software component of our monitoring middleboxes com-
municates with the ENDEAVOUR controller and provides programmatic
capabilities to the architecture by reconfiguring the hardware to meet the
controller requests. In turn, the hardware performs the monitoring actions,
i.e., timestamping, packets checking and parsing and filters the traffic so as
to communicate to the software only the traffic of interest.

Note that one of the advantages of the monitoring middleboxes is the
easiness of its deployment. As such they will be deployed as needed (i.e.,
not necessarily in the specific locations depicted in Figure 4). Additionally
we will explore the possibilities of augmenting the switch monitoring capa-
bilities through QCN repurposing techniques, as described in Section 2.3.1.
Specifically we will explore whether they can be implemented in the planned
middlebox, or/and in a dedicated switching platform using Original Equip-
ment Manufacturer (OEM) ASICs and their respective API

Our monitoring architecture decouples the monitoring from the switching
infrastructure. This design allows us to overcome the limitations of existing
commercial SDN switches (see Section 2.4) by complementing their capabil-
ities with lightweight middleboxes.

The separation of the monitoring and the switching infrastructure thus
reinforces each other without creating unnecessary dependencies in the fol-
lowing manner:

• Reduced limitations and overhead. The SDN approach of our
monitoring design provides highly flexible monitoring capabilities. The
controller can request specific actions from a middlebox, e.g., gathering
measurements, or redirecting a flow to a middlebox for further analysis.
Monitoring can be hence scaled on the fly to meet specific needs. Thus
eliminating unnecessary overhead on the whole monitoring system. In
this sense, our design allows the controller to move from coarse grain
to a fine grained monitoring on demand.

• Active measurement capabilities. By deploying our middleboxes
in locations that would otherwise witness no traffic flows, we can make
targeted active measurements, e.g., by generating ad hoc traffic flows
and monitor them. The fact that no OpenFlow based switch has active
measurements capabilities is a critical reason for including middleboxes
in our monitoring architecture as it will allow for active debugging both
in the development phase as well as in latter stages.

• Future proof. The ability to place middleboxes in the locations of

H2020-ICT-2014-1 Project No. 644960 17

WP3 / D3.2 ENDEAVOUR Version 0.9

choice of the switching infrastructure will not only allow ENDEAV-
OUR to cover a wide range of the monitoring requirements described
in previous deliverables [8], but also to adjust the monitoring capa-
bilities to new requisites. In this sense, by decoupling the monitoring
and the switching fabric we provide a greater ability to both infras-
tructures to adapt to future developments. Untied to the switching
fabric architecture, new middleboxes can be placed in any location of
the switching fabric. Furthermore, if new monitoring needs require en-
hanced capabilities, the middleboxes can be improved independently
from the switching fabric. As a result the monitoring and the switching
infrastructures can evolve independently.

• Backwards compatibility. The separation between the monitoring
and switching infrastructures facilitates a backwards compatible de-
ployment of a monitoring system. While SDN in principle enables com-
prehensive monitoring capabilities, the state-of-the-art SDN switches
typically falls far from being that extensive. In this sense, our soft-
ware defined middleboxes monitoring architecture can be deployed on
a switching fabric that uses existing SDN hardware to improve the
monitoring capabilities of the system without having to deal with the
cost, complexities and risks of developing new switching hardware.

3.1 Monitoring requirements

This section discusses how the monitoring requirements could be fulfilled by
our envisioned architecture and Table 1 summarizes them. Our middleboxes
have the monitoring capabilities necessary for each of the use cases previ-
ously analyzed [8]. While in our envisioned scenario with an SDN switch
some of this functionalities might be implemented at the switch level rather
than using the middleboxes, the middleboxes not only enable extra new uses
but will be critical in the development phase due to their active debugging
capabilities.

While monitoring load balancing, traffic engineering monitoring or ad-
vanced peering forms can be –in principle– implemented using an SDN
switch, placing our middleboxes at the right location allows us to provide
the required monitoring capability as well as perform active measurements.
For instance, find the most convenient paths –latency wise, for instance– to
optimize traffic engineering. In the early stages of the development phase,
active debugging of the network will be a critical functionality.

In the case of Routing As a Service (RAS), outsourcing the routing

H2020-ICT-2014-1 Project No. 644960 18

WP3 / D3.2 ENDEAVOUR Version 0.9

decision to the IXP operator implies that the IXP has to keep record of
every member routing table. While currently it is possible to monitor the
routing and forwarding information base of network equipments there is
no monitoring application to view the global state of the tables. While in
principle an SDN controller could achieve such full vision, it might become
problematic number of members implementing RAS is large enough. Our
monitoring middleboxes are a simple manner to alleviate this problem.

Furthermore, some other use cases do need our middleboxes in order to
be feasible. For example, in the case of overlay monitoring, thanks to the
reconfigurable properties of our middleboxes they can easily track new pro-
tocols and match different encapsulation layers. This is a critical function-
ality for overlay monitoring that can be hardly implemented by exclusively
relying on an SDN switch.

The existing SDN switches do not include the reactive capabilities we
aim for and are hence not capable of automatically altering the forward-
ing behaviour, for instance to react to a detected security threat. Instead
our middleboxes can capture the whole packet for further inspection, thus
enhancing the security capabilities. Moreover, in order to detect different
types of security threats new rules have to be implemented in the SDN
switch, saturating the capacity of the flow table. Hence, our separation of
the monitoring from the switching infrastructure reduces the limitations in-
herent to the latter. For instance, the amount of rules necessary to detect a
SYN flood, a form of Denial of Service (DoS) attack, could overwhelm the
size of the flow table. By relying on our middleboxes, we can detect this
attack without suffering the limitations of existing SDN switches.

H2020-ICT-2014-1 Project No. 644960 19

WP3 / D3.2 ENDEAVOUR Version 0.9

Self-config
portal

SDX
Policy

interface

Member
applications

IXP applications
DDoS
mitigation

Traffic
Engineer

Fabric manager

Edge:
iSDX

OF Driver

A B

Network update:
Ez-Segway

IXP fabric

Core:
Umbrella

Route
Server/Relay

Participant
Controller

Route
Server/Relay

Mb

Mb

Mb

Mb

Mb

Mb

Mb

Mb

Mb

Mb

Mb Mb

Mb

Mb

Mb

Mb

Monitoring Platform

Middle
boxes

SDN
switches

Monitoring controller

Participant
Information

Base

Figure 4: Monitoring architecture

H2020-ICT-2014-1 Project No. 644960 20

WP3 / D3.2 ENDEAVOUR Version 0.9

U
se

ca
se

s
M

on
it

or
in

g
re

q
u

ir
em

en
ts

M
on

it
or

in
g

ca
p

ab
il

it
ie

s
C

on
tr

ol
p

la
n

e
D

at
a

p
la

n
e

P
ri

m
it

iv
es

S
D

N
sw

it
ch

L
o
ad

B
al

an
ci

n
g

7
tr

affi
c

v
ol

u
m

e
3

3
p

er
p

h
y
si

ca
l

p
or

t

T
ra

ffi
c

en
gi

n
ee

ri
n

g
7

tr
affi

c
v
ol

u
m

e
3

3
p

er
p

h
y
si

ca
l

p
or

t

P
ee

ri
n

g
co

n
tr

ol
/d

at
a

tr
affi

c
v
ol

u
m

e
3

3
p

la
n

e
co

n
si

st
en

cy
p

er
p

h
y
si

ca
l

p
or

t

O
ve

rl
ay

ch
an

ge
s

in
F

or
w

ar
d

in
g

In
fo

rm
at

io
n

B
as

e
(F

IB
)

3
li

m
it

ed
ro

u
ti

n
g

en
tr

ie
s

S
ec

u
ri

ty
co

n
tr

ol
/d

at
a

co
n
ti

n
ge

n
t

on
th

e
3

li
m

it
ed

p
la

n
e

co
n

si
st

en
cy

sp
ec

ifi
c

se
cu

ri
ty

as
p

ec
t

T
ra

ffi
c

st
ee

ri
n

g
B

G
P

tr
affi

c
v
ol

u
m

e
3

3
an

n
ou

n
ce

m
en

ts
p

er
p

h
y
si

ca
l

p
or

t

R
ou

ti
n

g
A

s
a

S
er

v
ic

e
-F

IB
(r

ou
te

s)
-c

on
si

st
en

cy
w

it
h

F
IB

3
li

m
it

ed
R

A
S

-c
on

ve
rg

en
ce

ti
m

e
-t

op
ol

og
y

T
ab

le
1:

M
on

it
or

in
g

re
q
u
ir

em
en

ts
an

d
m

id
d

le
b

ox
es

p
er

u
se

ca
se

H2020-ICT-2014-1 Project No. 644960 21

WP3 / D3.2 ENDEAVOUR Version 0.9

3.2 Monitoring middleboxes

To achieve the aforementioned goals ENDEAVOUR will look for lightweight
middleboxes similar to Open Source Network Tester (OSNT). OSNT is
an open hardware/software co-design for traffic generation and monitoring
based on the NetFPGA card. The combination of traffic generation and
traffic monitoring capabilities into a single FPGA-equipped device allows
a per–flow characterisation of a networking system or a an entire network
regarding end-to-end latency, jitter, packet-loss, congestion, etc.

In the reminder of this section we look at the main characteristics from
OSNT that we envision for the ENDEAVOUR middleboxes.

Hardware and software task division. While the hardware side of
OSNT provides all the means for a fast and accurate packet processing,
the software side provides APIs for an easy hardware management. In this
fashion, an user can adapt the hardware to his needs or take advantage of
the existing APIs to create a software application that instruct OSNT on
what packets generate/receive.

Monitoring subsystem. The OSNT traffic monitor subsystem provides
functions for packet capturing, hardware packet filtering (i.e., only the
traffic-of-interest is sent to the host), high precision, accurate, packet times-
tamping and high-level traffic statistic gathering.

Figure 5 illustrates the architecture of the monitoring subsystem in
OSNT. The 5-tuple (protocol, IP address pair and Layer 4 port pair) ex-
traction is performed using an extensible packet parser able to recognize
both VLAN and MPLS headers along with IP and IP encapsulation. Fur-
ther flexibility is enabled by extending the parser implementation-code as
required. A module instantiated immediately after the physical interfaces
and before the receive queues timestamps incoming packets as they are re-
ceived by the hardware. The design is an architecture that implicitly copes
with a workload of full line-rate per port of minimum sized packets. However
this will often exceed the capacity of the host, e.g., regarding its processing
or storage capabilities, or may contain traffic of no practical interest. To
this end OSNT implements two traffic-thinning approaches:

• 5-tuple filter: only packets that are matched to a rule are sent to the
software, while all other packets are dropped.

• packet cutting: optionally, it is possible to record a fixed-length part
of each packet (sometimes called a snap-length) along with a hash of

H2020-ICT-2014-1 Project No. 644960 22

WP3 / D3.2 ENDEAVOUR Version 0.9

���������	����

���

��

���

��

���

��

���

��

���

���

������

����	�����	��

����

�	�����

�	�	��	����

������	��

���	����
��	�
�

������

 �	���	���

����

!��������

������

"��#�	�

���$

��	%

���&

$�	��	�������

����

����	

����������

��������	���
�

�
����
�����

	�������

�������

��
�

�
��

�����

����

�������

�
��

��������

�
�����

����	����

��
�

���

��

Figure 5: The architecture for OSNT traffic monitoring subsystem.

the entire original packet.

Providing an accurate timestamp to (incoming) packets is a critical objec-
tive of the traffic monitoring subsystem. Packets are timestamped as close
to the physical Ethernet device as possible to minimize FIFO-generated jit-
ter and permit accurate latency measurement. A dedicated timestamping
unit stamps packets as they arrive from the physical (MAC) interfaces. Mo-
tivated by the need to have minimal overhead while also providing sufficient
resolution and long-term stability, OSNT uses a 64-bit timestamp divided
into two parts. The upper 32-bits count seconds, while the lower 32-bits
provide a fraction of a second. Integral to accurate timekeeping is the need
to correct the frequency drift of an oscillator.

H2020-ICT-2014-1 Project No. 644960 23

WP3 / D3.2 ENDEAVOUR Version 0.9

Generator subsystem. The OSNT traffic generator subsystem is de-
signed to generate full line-rate per card interface, scalable so that it allows
for multiple traffic generators to work in parallel within a single environ-
ment. Figure 6 illustrates the high-level architecture of the traffic generation

���

��

���

��

���

��

���

��

���	

��

�
�������	�

������������	���

�	�����

��
����	�

���

���

��

���

��

���

��

���

��

���	

��

�������

�� 	�
�

�������

�� 	�
�

�������

�� 	�
�

����

������

�������

����

�� �� �� �� ��

�� �� �� �� ��

�	�����

����	�

Legends:

DM – Delay Module

RL – Rate Limiter

TS – Time Stamp

TM – Traffic Model

DP – Data Pattern

FT – Flow Table

PIO – Programmed

input/output

�� �� �� �� ��

Figure 6: The architecture for OSNT traffic generation system.

pipeline. The key idea behind is to provide a large degree of modularity en-
visioning a set of micro-engines, each used to support one or more protocols
at network and transport-layers such as Ethernet, TCP or User Datagram
Protocol (UDP) and application-protocols such as BGP. Each micro-engine
either generates synthetic or replays captured traffic (the actual feature be-
ing implemented) for one or more of the selected egress interfaces.

4 Outlook

So far we have looked at the state-of-the-art monitoring at IXPs and its
limitations with regard to our envisioned monitoring capabilities. In partic-

H2020-ICT-2014-1 Project No. 644960 24

WP3 / D3.2 ENDEAVOUR Version 0.9

ular we examined packet sampling based monitoring with sFlow (see Sec-
tion 2.1.2), the flow counters approach of NetFlow (see Section 2.1.3), and
the port mirroring option (see Section 2.1.4), as well as the existing active
monitoring solutions (see Section 2.2). We then explored the opportunities
of technical solutions at the edge of the state of the art (see Section 2.3),
i.e., repurposing QCN for real-time monitoring (see Section 2.3.1) and SDN
switches (see Section 2.3.2).

Realizing of the limitations of the state-of-the-art, we proposed a moni-
toring architecture that integrates the virtues of an SDN switch, and comple-
ments the drawbacks of its existing commercial embodiments by deploying
open sourced lightweight flexible middleboxes in the switching fabric. Addi-
tionally QCN repurposing techniques (see Section 2.3.1) have the potential
to enhance our capabilities with real-time monitoring.

In the near future we will work toward integrating the different elements
of our monitoring architecture as described in Section 3. The next critical
step is developing a monitoring controller capable of managing and coor-
dinating our monitoring middleboxes and the SDN switch. An API will
also allow this controller to receive information from the route server. Ul-
timately, the monitoring controller will interact with the fabric manager
to feed the applications (both for members and IXP operators) with the
necessary monitoring data.

H2020-ICT-2014-1 Project No. 644960 25

WP3 / D3.2 ENDEAVOUR Version 0.9

5 Acronyms

SDN Software Defined Network

BGP Border Gateway Protocol

IXP Internet eXchange Point

SLA Service-Level Agreement

IP Internet Protocol

DE-CIX German Commercial Internet Exchange

AMS-IX Amsterdam Internet Exchange

RAS Routing As a Service

DDoS Distributed Denial of Service

DoS Denial of Service

ms milliseconds

DNS Domain Name System

FIB Forwarding Information Base

TCP Transport Control Protocol

UDP User Datagram Protocol

OSNT Open Source Network Tester

SNMP Simple Network Management Protocol

MRTG Multi Router Traffic Grapher

API Application Program Interface

OVS Open vSwitch

QCN Quantized Congestion Notification

MPLS Multiprotocol Label Switching

CAM Content-Addressable Memory

H2020-ICT-2014-1 Project No. 644960 26

WP3 / D3.2 ENDEAVOUR Version 0.9

CP Congestion Point

RP Reaction Point

IPFIX IP Flow Information Export

CPU Central Processing Unit

CNM Congestion Notification Message

RL Rate Limiter

INEX Ireland Internet Exchange Point

ASIC Application-Specific Integrated Circuit

OEM Original Equipment Manufacturer

References

[1] AMS-IX. https://ams-ix.net/technical/statistics/

real-time-stats.

[2] Traffic Monitoring using sFlow. http://www.sflow.org/

sFlowOverview.pdf.

[3] 802.1Qau - Virtual Bridged Local Area Networks - Amendment: Con-
gestion Notification. Technical report, 2010.

[4] Mohammad Alizadeh, Berk Atikoglu, Abdul Kabbani, Ashvin Laksh-
mikantha, Rong Pan, Balaji Prabhakar, and Mick Seaman. Data center
transport mechanisms: Congestion control theory and ieee standardiza-
tion. In Communication, Control, and Computing, 2008 46th Annual
Allerton Conference on, pages 1270–1277. IEEE, 2008.

[5] Andreea Anghel, Robert Birke, and Mitch Gusat. Scalable high reso-
lution traffic heatmaps: Coherent queue visualization for datacenters.
In Traffic Monitoring and Analysis, pages 26–37. Springer, 2014.

[6] Rodrigo Braga, Braga, Edjard Mota, Mota, and Alexandre Passito,
Passito. Lightweight ddos flooding attack detection using nox/openflow.
LCN ’10, pages 408–415, Washington, DC, USA, 2010. IEEE Computer
Society.

H2020-ICT-2014-1 Project No. 644960 27

https://ams-ix.net/technical/statistics/real-time-stats
https://ams-ix.net/technical/statistics/real-time-stats
http://www.sflow.org/sFlowOverview.pdf
http://www.sflow.org/sFlowOverview.pdf

WP3 / D3.2 ENDEAVOUR Version 0.9

[7] Fedor Case and Davin Schoffstall. A simple network management pro-
tocol (snmp). Technical report, RFC 1157, 1990.

[8] Castro, Fernandes, Antichi, Gusat, Kathareios, Uhlig, and Dietzel.
D.3.1: Monitoring. ENDEAVOUR, 2015.

[9] Cisco. Sampled NetFlow. http://www.cisco.com/c/en/us/td/docs/
ios/12_0s/feature/guide/12s_sanf.html.

[10] Broadcom Corp. Broadcom BCM56850 StrataXGS Trident II
Switching Technology. https://www.broadcom.com/collateral/pb/

56850-PB03-R.pdf.

[11] Corsa Technology. Corsa Product Overview – DP64xx Data
Plane Family. http://www.corsa.com/wp-content/uploads/2014/

11/Corsa-Product-Overview.pdf.

[12] Andrew R Curtis, Jeffrey C Mogul, Jean Tourrilhes, Praveen Yala-
gandula, Puneet Sharma, and Sujata Banerjee. Devoflow: Scaling flow
management for high-performance networks. In ACM CCR, volume 41,
pages 254–265. ACM, 2011.

[13] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris. Combining openflow and sflow for an effective and scalable
anomaly detection and mitigation mechanism on sdn environments.
Comput. Netw., 62:122–136, Apr 2014.

[14] ITU. Oam functions and mechanisms for ethernet-based networks.
Standard G.8013/Y.173108/15, ITU-T, 2015.

[15] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
Openflow: Enabling innovation in campus networks. ACM CCR,
38(2):69–74, Mar 2008.

[16] NoviFlow. NoviSwitch 2128 High Performance OpenFlow
Switch datasheet. http://noviflow.com/wp-content/uploads/

NoviSwitch2128Datasheet.pdf.

[17] Peter Phaal and Sonia Panchen. Packet Sampling Basics. http://www.
sflow.org/packetSamplingBasics/.

[18] Peter Phaal, Sonia Panchen, and Neil McKee. Inmon corporation’s
sflow: A method for monitoring traffic in switched and routed networks.
Technical report, RFC 3176, 2001.

H2020-ICT-2014-1 Project No. 644960 28

http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
http://www.cisco.com/c/en/us/td/docs/ios/12_0s/feature/guide/12s_sanf.html
https://www.broadcom.com/collateral/pb/56850-PB03-R.pdf
https://www.broadcom.com/collateral/pb/56850-PB03-R.pdf
http://www.corsa.com/wp-content/uploads/2014/11/Corsa-Product-Overview.pdf
http://www.corsa.com/wp-content/uploads/2014/11/Corsa-Product-Overview.pdf
http://noviflow.com/wp-content/uploads/NoviSwitch2128Datasheet.pdf
http://noviflow.com/wp-content/uploads/NoviSwitch2128Datasheet.pdf
http://www.sflow.org/packetSamplingBasics/
http://www.sflow.org/packetSamplingBasics/

WP3 / D3.2 ENDEAVOUR Version 0.9

[19] Jeff Rasley, Brent Stephens, Colin Dixon, Eric Rozner, Wes Fel-
ter, Kanak Agarwal, John Carter, and Rodrigo Fonseca. Planck:
millisecond-scale monitoring and control for commodity networks. In
Proceedings of the 2014 ACM conference on SIGCOMM, pages 407–418.
ACM, 2014.

[20] Smokeping, 2015.

[21] Brent Stephens, Alan Cox, Wes Felter, Colin Dixon, and John Carter.
Past: Scalable ethernet for data centers. In CoNEXT. ACM, 2012.

[22] Junho Suh, TT Kwon, C Dixon, W Felter, and J Carter. Opensample:
A low-latency, sampling-based measurement platform for sdn. IEEE
ICDCS, 2014.

H2020-ICT-2014-1 Project No. 644960 29

	Introduction
	State-of-the-art in IXP monitoring
	Passive monitoring
	Simple Network Management Protocol
	Packet sampling - the sFlow approach
	Flow counters - the NetFlow approach
	Port mirroring

	Active monitoring
	Future directions in monitoring
	Quantized Congestion Notification
	OpenFlow Switches

	Limitations

	ENDEAVOUR monitoring architecture
	Monitoring requirements
	Monitoring middleboxes

	Outlook
	Acronyms

