
ENDEAVOUR: Towards a flexible
software-defined network ecosystem

Project name ENDEAVOUR
Project ID H2020-ICT-2014-1 Project No. 644960

Working Package Number 3
Deliverable Number D3.3

Document title Implementation of the Monitoring Platform
Document version 0.9

Editor in Chief Castro, QMUL
Authors Fernandes, Boettger, Antichi, Lapeyrade, Owezarski

Date 31/01/2017
Reviewer Owezarski, LAAS CNRS

Date of Review 01/01/2017
Status Public

WP3 / D3.3 ENDEAVOUR Version 0.9

Revision History
Date Version Description Author

28/11/16 0.1 First draft Antichi, Leao,
Boettger, Castro

29/11/16 0.2 CNRS contribution Lapeyrade,
Owezarski

30/11/16 0.3 Demonstration of the monitoring
platform

Fernandes

30/11/16 0.5 Add more information to the moni-
toring architecture

Fernandes

30/11/16 0.6 Description of demonstrator on
anomaly detection

Lapeyrade

30/11/16 0.7 Pass on the complete draft Antichi, Castro

05/12/16 0.8 Executive summary Castro

05/12/16 0.9 1st review - typos correction Owezarski

H2020-ICT-2014-1 Project No. 644960 2

WP3 / D3.3 ENDEAVOUR Version 0.9

Executive Summary

This is the accompanying report of the demonstrator of Work Package 3
for month 24, where the implementation of the ENDEAVOUR monitoring
platform is documented. In this report, we briefly discuss the organization
of the code development, we then describe the implementation of the ele-
ments of the ENDEAVOUR monitoring platform, and finally, present and
document the demonstrators.

H2020-ICT-2014-1 Project No. 644960 3

WP3 / D3.3 ENDEAVOUR Version 0.9

Contents

1 Introduction 5

2 Development Environment 5

3 Implementation of the monitoring architecture 5
3.1 The Monitoring Controller . 6
3.2 The Monitoring Database . 7
3.3 The Monitoring API . 8
3.4 The Monitoring probes . 10

3.4.1 Anomaly detection . 10

4 Demonstration of the Monitoring Platform 12
4.1 Demonstrator description . 13

4.1.1 Integration of monitoring probes 16

5 Summary 18

6 Acronyms 19

H2020-ICT-2014-1 Project No. 644960 4

WP3 / D3.3 ENDEAVOUR Version 0.9

1 Introduction

In this report, we document the implementation of the ENDEAVOUR mon-
itoring platform. Further details of its architecture were presented in the
previous deliverable [3]. We first discuss the organization of the project in
terms of code location, content, and development process (Section 2), then
we document the main elements of ENDEAVOUR monitoring platform in-
volved in the demonstrator (Section 3), and a description of the workflow of
the demonstrator (Section 4). Finally, Section 5, concludes this report.

2 Development Environment

The code of the ENDEAVOUR monitoring platform is versioned using the
git system and hosted on GitHub (https://github.com/h2020-endeavour)
where the rest of the ENDEAVOUR related code is also held. In particular
the branches “monitor” and “anomaly detection demo” contain the relevant
code to the monitoring platform. The code development process followed for
the implementation of the monitoring architecture is similar to the one used
in the rest of the ENDEAVOUR platform and reported in deliverable [2].
For this reason, we do not repeat here those details.

3 Implementation of the monitoring architecture

As presented in the deliverable [3], the monitoring architecture of the EN-
DEAVOUR platform relies both in data gathered from the Software De-
fined Networking (SDN) switches, and on data collected using the Open
Source Network Tester (OSNT) enabled monitoring probes. In this sec-
tion we present the implementation of such architecture and the elements
that integrate it. The main elements include a monitoring database that
stores the relevant per port and per flow statistics, which are retrieved by
the platform manager from the SDN switches. The Monitoring Controller
is then the element providing both Internet eXchange Point (IXP) mem-
bers and operators access to the data stored in such database, using an
Application Programming Interface (API). The monitoring platform also
includes OSNT monitoring probes that run specific software to extend the
monitoring capabilities of the ENDEAVOUR platform. We now describe
the implementation of each of these elements.

H2020-ICT-2014-1 Project No. 644960 5

https://github.com/h2020-endeavour

WP3 / D3.3 ENDEAVOUR Version 0.9

3.1 The Monitoring Controller

In ENDEAVOUR, the Monitoring Controller is a central element that in-
teracts both with the IXP members and operators and enables the afore-
mentioned agents to access statistics collected from the Open Flow (OF)
switches through an API.

The Monitoring Controller can receive monitoring flows on its initializa-
tion or through a REpresentational State Transfer (REST) interface, giving
the options for IXP operators and members to install monitoring flows in
the monitor table of the platform. The monitor table is always the initial
table of the OF pipeline of the switches in the IXP fabric. A monitoring
flow is received by the Monitoring Controller in JavaScript Object Nota-
tion (JSON) format as listed by Listing 1. In the example, the flow specified
is used to monitor the incidence of broadcast traffic in the switches of the
IXP.

{
” mon i to r f l ows ” : [

{
” dpids ” : [

1 ,2 ,3 ,4
] ,
” cook i e ” : 2054 ,
” cookie mask ” : 1 ,
” i d l e t i m e o u t ” : 300 ,
” hard t imeout ” : 300 ,
” p r i o r i t y ” : 11111 ,
”match ” : {

” eth type ” : 2054 ,
” e t h d s t ” : ” f f : f f : f f : f f : f f : f f ”

}
}

}
Listing 1: Example of monitoring flow configuration.

Furthermore, the software installed in the monitoring probes also inter-
acts with the Monitoring Controller, that then informs the platform manager
of what are the appropriate rules to install in the switches so as to implement
the specific use case triggered by the monitoring efforts.

H2020-ICT-2014-1 Project No. 644960 6

WP3 / D3.3 ENDEAVOUR Version 0.9

3.2 The Monitoring Database

The ENDEAVOUR monitoring platform retrieves statistical information
from the SDN switches and stores it in a time series database named In-
fluxDB. The code to save the information in the database is adapted from [1].
A configuration file for every switch of the IXP fabric is required in order
to monitor a switch port and flow statistics. Listing 2 shows an example of
the YAML Ain’t Markup Language (YAML) file required by the platform
to monitor a switch. Each configuration file contains a similar description
where the switch and the port names are specified as other fields related to
sampling interval and the recording of information in the database.

−−−
The id o f the datapath to be c o n t r o l l e d
dp id : 0 x0000000000000001
The name o f the datapath f o r use with l ogg ing
name : ”Edge−1”
Purely in f o rm at i o na l
d e s c r i p t i o n : ”Edge 1”
hardware : ”??”
whether gauge should monitor s t a t s f o r por t s
mon i tor por t s : True
The f i l e to record por t s s t a t i s t i c s
m o n i t o r p o r t s f i l e : ” por t s . out ”

the p o l l i n g i n t e r v a l f o r port s t a t s in seconds
m o n i t o r p o r t s i n t e r v a l : 10
whether gauge should take p e r i o d i c f low t a b l e dumps
m o n i t o r f l o w t a b l e : True
the f i l e to record f low t ab l e dumps
m o n i t o r f l o w t a b l e f i l e : ” f t . out ”

the p o l l i n g i n t e r v a l f o r f low t a b l e monitor ing
m o n i t o r f l o w t a b l e i n t e r v a l : 10
i n f l u x d b s t a t s : True
i n t e r f a c e s :

name f o r t h i s port , used f o r l ogg ing / monitor ing
2 :

name : ” core 2”
1 :

name : ” core 1”
4 :

name : ” core 4”
3 :

name : ” core 3”
5 :

H2020-ICT-2014-1 Project No. 644960 7

WP3 / D3.3 ENDEAVOUR Version 0.9

name : ”A”
6 :

name : ”Route Server ”
7 :

name : ”Arp Proxy”

Listing 2: Monitoring Configuration file.

The database is populated using native OF API in an application present
in the Fabric Manager. The statistics retrieved from the switches include
all possible per port/flow statistics. The Monitoring controller then is able
to execute queries in the database and filter the relevant information for the
IXP operator or member. This is a positive feature of the platform as the
separation of the logic to populate the database and to retrieve information
makes it easier to deploy independent applications that can have an easier
access to the required data.

Table 1 presents all the statistics requested for the switches and written
in the database.

Statistic Description

flow byte count Total number of bytes matched by a flow

flow packet count Total number of packets matched by a flow

port bytes in Total number of bytes received by a port

port bytes out Total number of bytes sent through a port

port dropped in Number of packet received dropped

port dropped out Number of packets to be sent dropped out

port errors in Number of errors in received packet in a port

port packets in Number of packets received by a port

port packets out Number of packets sent through a port

port state reason Changes to port state

Table 1: Statistics from the switches available in the database

3.3 The Monitoring API

An API is the element bridging the information collected in the database
with both IXP members and operators. When a member wants to retrieve

H2020-ICT-2014-1 Project No. 644960 8

WP3 / D3.3 ENDEAVOUR Version 0.9

some information, the member communicates with the Monitoring Con-
troller, who, using the monitoring API, sends that information to the mem-
ber requesting it. Slightly different is the case for IXP operators which can
create applications directly using the function calls of the monitoring API.
It enables the retrieval of statistics to be used in the decision process of some
use cases such as load balancing and advanced blackholing.

The API methods are implemented inside a class name StatsCollector,
which receives the database client when it is created as shown in Listing 3.

INFLUXDB DB = ”sdx”
INFLUXDB HOST = ” l o c a l h o s t ”
INFLUXDB PORT = 8086
INFLUXDB USER = ””
INFLUXDB PASS = ””
c l i e n t = Inf luxDBClient (

host=INFLUXDB HOST, port=INFLUXDB PORT,
username=INFLUXDB USER, password=INFLUXDB PASS,
database=INFLUXDB DB, timeout =10)

c = S t a t s C o l l e c t o r (c l i e n t)

Listing 3: Creation of a StatsCollector with an InfluxDB client.

The current available methods to retrieve information from the database
and implemented as methods from StatsCollector API are:

• Port methods. Port methods get the rate of variate port statistics.
All the API calls related to ports receive the same three arguments,
which help to improve the time to learn how to use the code. To get the
port statistics a user should pass: the interval of the measurements,
the name of the switch and the port name. In order to be valid, all
these three fields should be present in the configuration files of the
Fabric Manager application discussed in 3.2. The available methods
are described below:

port bytes in(interval, dp name, port name) - gets the rate of
bytes that entered a port.

port bytes out(interval, dp name, port name) - gets the rate of
bytes sent through a port.

port dropped in(interval, dp name, port name) - gets the rate of
packets dropped by an input port.

port dropped out(interval, dp name, port name) - get the rate of
packet dropped by an output port.

H2020-ICT-2014-1 Project No. 644960 9

WP3 / D3.3 ENDEAVOUR Version 0.9

port errors in(interval, dp name, port name) - gets the rate of
errors in an input port.

port packets in(interval, dp name, port name) - gets the rate of
packets in an input port.

port packets out(interval, dp name, port name) - gets the rate
of packets sent through a port.

• Flow methods. Flow methods allow the obtention of the rate of
packets that match a flow or a group of flows in the switch. There are
two methods: one to retrieve the amount of packets per second and
another for the number of bytes per second. The required arguments
are: the interval of the measurements and the name of the switch.
Optional arguments can be passed to improve the results: the value
of the flow cookie identifier, the number of the table and the match
fields of a flow. It is important to notice that if one of the values in
the query does not exist in the database, the result returned will be
empty. The available methods are as follow:

flow bytes(self, interval, dp name, cookie, table id, flow)

- gets the rate of bytes of a flow or group of flows.

flow packets(self, interval, dp name, cookie, table id, flow)

- gets the rate of packets of a flow or a group of flows.

An example of usage of the monitoring API can be seen in section 4.

3.4 The Monitoring probes

While the typical statistical information collected using the OF protocol is
rich and wide, not all the use cases considered in ENDEAVOUR can be
implemented. Use case with monitoring requirements not supported by the
standard native OF API require specific software. While this software can be
installed in the platform manager, it forcibly compromises its resources. For
this reason, using monitoring probes allows the extension of the capabilities
of the platform without compromising its resources, as it was argued in
the previous deliverable [2]. The monitoring probes of the ENDEAVOUR
monitoring platform are built upon OSNT.

3.4.1 Anomaly detection

In this section we describe how we extend the monitoring capabilities using
OSNT monitoring probes, which we exemplifies with the anomaly detection

H2020-ICT-2014-1 Project No. 644960 10

WP3 / D3.3 ENDEAVOUR Version 0.9

use case. We provide here a brief description of the software used for the
detection of anomalies, but the focus of this deliverable is on its monitoring
capabilities and on its integration in the ENDEAVOUR monitoring platform
using the OSNT monitoring probes. A short description of the anomaly
detection software developed for that purpose can be found in the deliverable
presenting the corresponding use case [4].

Anomalies (including attacks) are a moving target, as new anomalies
and attacks arise every day. To detect them, traffic needs to be charac-
terized and classified (as much as possible) in order to autonomously make
decisions concerning the treatment to apply on the isolated traffic classes
(legitimate or illegitimate). Relying on human network administrators for
deciding whether a flow is legitimate, leads to very poor temporal perfor-
mances. Unsupervised learning is thus a promising approach for the mon-
itoring of traffic anomalities. An IXP could benefit from such capabilities.
In this case we consider an online unsupervised learning algorithms based
on clustering [5] to build a system able to detect anomalies autonomously
and on real-time.

While this is a rather desirable use case for the ENDEAVOUR platform,
it is not directly supported by the native OF API, as it depends on a spe-
cific software (i.e., Online and Real-time Unsupervised Network Anomaly
Detection Algorithm (ORUNADA)). Whereas such software could run in
the ENDEAVOUR fabric manager, it would consume the limited resources
of the controller. As argued in previous deliverables [3], we can benefit from
the OSNT monitoring probe. The OSNT ability of packet-stripping and
accurate timestamping further helps in implementing these monitoring ca-
pabilities with a limited impact on the available resources. We now present
how the fabric manager mirrors the traffic to the OSNT monitoring probe,
and the anomaly detection software that monitors the traffic in search for
anomalies. When such an anomaly is detected, the software sends an alert
to the Monitoring Controller, which comunicates with the platform man-
ager to ensure that the rules prevent the traffic from entering the fabric are
installed.

Integration of the anomaly detection software with the OSNT
monitoring probes

In order to fully exploit the capabilities of both OSNT and the anomaly
detection software, the two components needed to be jointly revisited. The
OSNT platform must be able to send packets (or the essential informations
included in those packets) in a way allowing the anomaly detection software
to read them. Similarly, the anomaly detection software has to adapt its
traffic input procedure to handle packets at the speed provided by OSNT.

H2020-ICT-2014-1 Project No. 644960 11

WP3 / D3.3 ENDEAVOUR Version 0.9

For the OSNT part, two major changes needed to be be done to fit the
anomaly detection software requirements:

• Add a precise timestamp to each packet, which is a required infor-
mation for the anomaly detection software. While the software could
timestamp packets based on its system clock, it would lack accuracy
as it would not timestamp at the time of the packet arrival at the
network board. Moreover, it would impose a toll in terms of resource
consumption. To deal with this, the hardware timestamp provided
by the netFPGA card was directly included into each packed. More
precisely, the timestamp was included into the Media Access Con-
trol (MAC) destination address slot of the Ethernet frame.

• Re-forge incoming packets in order to save resources and speed-up
its processing. By stripping the packets from their payload and any
other unnecessary fields, resource consumption is limited. Note that
commercial SDN switches lack this capability.

Regarding the anomaly detection software, the main modification relates
to the ability to handle the speed at which OSNT provides new packets.
Due to the hardware nature of the monitoring probes, the speed at which it
provides packets can only be handle by the software component after some
modifications of this later. Consequently, we adapted the software in the
following manner:

• the anomaly detection software now directly receives packets from the
interface, hence reducing I/O operations for the machine;

• packets are separated into micro-slots upon reception, so they can
wait for the anomaly detection software to have available resources to
process those micro-slots in the right order.

4 Demonstration of the Monitoring Platform

In this section we describe a demonstration of the monitoring platform of
ENDEAVOUR providing flow and port statistics, required for use cases such
as TE, load balancing, or access control (see [2] for an examination of mon-
itoring requirements).

H2020-ICT-2014-1 Project No. 644960 12

WP3 / D3.3 ENDEAVOUR Version 0.9

ENDEAVOUR platform

Monitoring
Controller

Fabric
Manager

Member A Member B

Figure 1: A simple topology for the demonstration.

4.1 Demonstrator description

The monitoring demonstrator is built upon a simple IXP topology with
two peering members, depicted in Figure 1. Members A and B exchange
Hypertext Transfer Protocol (HTTP) traffic on the Transport Control Pro-
tocol (TCP) port 80.

The steps of the demonstration are as follows:

1. The topology is started and the initial monitoring flow is installed in
the fabric switches by the Monitoring Controller of the ENDEAVOUR
platform. The flow has the goal to monitor the amount of traffic
destined to the port 80 in one of the switches of the fabric. The flow
is in JSON format, as shown in Listing 4:

{
” mon i to r f l ows ” : [

{
” dpids ” : [

1
] ,
” cook i e ” : 1 ,
” cookie mask ” : 1 ,
” i d l e t i m e o u t ” : 500 ,
” hard t imeout ” : 500 ,
” p r i o r i t y ” : 11111 ,
”match ” : {

” eth type ” : 2048 ,
” i p p r o t o ” : 6 ,
” t c p d s t ” : 80

}

H2020-ICT-2014-1 Project No. 644960 13

WP3 / D3.3 ENDEAVOUR Version 0.9

}
}

Listing 4: Description of monitor flow.

2. The Fabric Manager requests statistics from the switches, in the con-
figured interval, e.g., every 10 seconds. The flow and port counters
are saved as time series in the database. The Fabric Manager saves
statistics for every flow and port of the IXP switches. Figure 2 shows
the reply messages for the port and flow status requests.

3. Member A sends traffic to port B for the TCP destination port 80.

4. An application presented in Listing 5 is used to demonstrate the API.
In the example, the application connects to the database and sends
requests at the rate of bytes of the port named A in the configuration.
Also, it requests the rate of packets destined to the MAC address
ca:fe:bo:ca:fa. Figure 3 shows the output of the query.

c l i e n t = Inf luxDBClient (
host=INFLUXDB HOST, port=INFLUXDB PORT,
username=INFLUXDB USER, password=INFLUXDB PASS,
database=INFLUXDB DB, timeout =10)
c = S t a t s C o l l e c t o r (c l i e n t)
Get the ra t e o f b y t e s going to por t A on swi t ch Edge−1
c . p o r t b y t e s o u t (10 , ”Edge−1” , ”A”)
f low = {” e t h d s t ” : ” ca : f e : bo : ca : f a ”}
c . f l ow packe t s (10 , Edge−1, f low)

Listing 5: API usage in the demonstration.

The graph of the traffic resulting from the monitoring flow is also dis-
played in the demonstration and can be seen in Figure 4. This flexibility
highlights the benefits of using a monitoring database to keep all the data.

Another important aspect of the demonstration, is that the capabilities
to retrive information can be used by the IXP members and operators to
dynamically implement use cases. By integrating the monitoring API code,
use cases such as load balancing or TE can dynamically change the network
based on the current rate of traffic in a port. Moreover, the possibility to
install monitoring flows allows fine grained monitoring that further leverages
SDN capabilities.

A narrated video of this use case demonstration can be found at:

H2020-ICT-2014-1 Project No. 644960 14

WP3 / D3.3 ENDEAVOUR Version 0.9

Figure 2: OF stats messages requested by the Fabric Manager.

Figure 3: Result of the query for the packet rate of TCP traffic in the port
80.

Figure 4: Result of the query for the packet rate of TCP traffic in the port
80.

H2020-ICT-2014-1 Project No. 644960 15

WP3 / D3.3 ENDEAVOUR Version 0.9

• https://www.youtube.com/watch?v=YiKYC2jaqSo

Reproducing the monitoring demonstration. We used torch for or-
chestrating and scheduling the network events needed to showcase monitor-
ing in the ENDEAVOUR platform. The specification file containing each
network event is stored in iSDX/test/specs/test1-mon.spec. The moni-
toring rules of the demonstration can be found in the file iSDX/test/specs/
test1-mon-monitor flows.cfg.

Grafana is the tool used to reproduce the flow of traffic through the IXP
fabric. The web-based Grafana interface can be accessed via any browser
installed on the Host VM machine by entering the following address http:

//localhost:3000.

4.1.1 Integration of monitoring probes

In this demonstrator we used the same topology described in Figure 1, where
members A and B again exchange HTTP traffic.

The steps of the demonstration are as follows:

1. The topology is started and IXP member A sends traffic to member B.
Such traffic is initially normal, until we inject a TCP attack. Figure 5
show the tpcdump result once the attack traffic has been injected.

Figure 5: Tcpdump trace of the attack sent to router B

H2020-ICT-2014-1 Project No. 644960 16

https://www.youtube.com/watch?v=YiKYC2jaqSo
http://localhost:3000
http://localhost:3000

WP3 / D3.3 ENDEAVOUR Version 0.9

Figure 6: Traffic capture over the anomaly detection software interface

2. The fabric manager mirrors the traffic to the OSNT monitoring probe.

3. The monitoring probes then strips the packets of the unnecessary fields
and passes the packets with their own timestamp to the anomaly de-
tection software, as described in 3.4.1. The software relies on a virtual
network interface to check every packet.

4. The anomaly detection software stores every packet received. After
initialization, the software engages in a calibration process of 15 sec-
onds of duration.

5. When the software detects an attack, sends an HTTP message to the
fabric manager, such as the one in Figure 6. This message lists all the
attacks detected during a 1 second time window. The time window is
of 1 second, i.e., if during this period there is at least one attack, the
software will sent an HTTP message to the fabric manager with all the
attacks which took place in the period. Listing 6 shows an example
from the demonstrator with the content of such message.

6. This message can then be used to enforce specific filtering policies to
prevent the traffic of the attack from reaching its destination. Deliv-
erable [4] demonstrates such use case..

{
” anomal ies ” : [

{
” a d d i t i o n a l i n f o r m a t i o n s ” : [

{
” f e a t u r e ” : ”NB RST” ,
” type ” : ” 975 .705 ” ,
” va lue ” : ”sup”

} ,
{

H2020-ICT-2014-1 Project No. 644960 17

WP3 / D3.3 ENDEAVOUR Version 0.9

” f e a t u r e ” : ”PER SRCPORTS DEST” ,
” type ” : ” 928.2975 ” ,
” va lue ” : ”sup”

} ,
{

” f e a t u r e ” : ”PER NB RST” ,
” type ” : ” 0.7582732156561781 ” ,
” va lue ” : ”sup”

} ,
{

” f e a t u r e ” : ”NB SRCPORTS” ,
” type ” : ” 931 .825 ” ,
” va lue ” : ”sup”

}
] ,
” anomaly desc r ip t i on ” : ”RST attack ” ,
” anomaly id ” : 4 ,
” f l o w in f o r mat i on ” : {

” i p d s t ” : ” 1 7 2 . 2 5 4 . 3 0 . 2 0 ”
} ,
” key type ” : ” i p v 4 s r c ” ,
” po int ” : ” 2 2 2 . 1 7 5 . 4 . 7 0 ”

}
] ,
” switch ” : 1 ,
” time ” : ”2016−11−25T17 : 0 2 : 0 8 . 0 0 0 Z”

}
Listing 6: Example of anomaly report

A narrated video of this use case demonstration can be found at:

• https://www.youtube.com/watch?v=qSVF58htEIg

5 Summary

In this report, we document the implementation of the ENDEAVOUR mon-
itoring platform. We discuss the organization of the code development,
then we document the elements of ENDEAVOUR monitoring platform and
present and describe the demonstrator.

H2020-ICT-2014-1 Project No. 644960 18

https://www.youtube.com/watch?v=qSVF58htEIg

WP3 / D3.3 ENDEAVOUR Version 0.9

6 Acronyms

SDN Software Defined Networking

IXP Internet eXchange Point

TE Traffic Engineering

VM Virtual Machine

TCP Transport Control Protocol

API Application Programming Interface

MAC Media Access Control

REST REpresentational State Transfer

OF Open Flow

OSNT Open Source Network Tester

ORUNADA Online and Real-time Unsupervised Network Anomaly De-
tection Algorithm

JSON JavaScript Object Notation

HTTP Hypertext Transfer Protocol

YAML YAML Ain’t Markup Language

References

[1] Josh Bailey and Stephen Stuart. Faucet: Deploying sdn in the enterprise.
ACM Queue, October 2016.

[2] ENDEAVOUR consortium. D.2.3: Implementation of the sdn architec-
ture. ENDEAVOUR deliverable, December 2016.

[3] ENDEAVOUR consortium. D.3.2: Design and final requirements of the
monitoring platform. ENDEAVOUR deliverable, January 2016.

[4] ENDEAVOUR consortium. D.4.5: Software implementing selected use
cases for ixp members. ENDEAVOUR deliverable, December 2016.

H2020-ICT-2014-1 Project No. 644960 19

WP3 / D3.3 ENDEAVOUR Version 0.9

[5] J. Dromard, G. Roudière, and P. Owezarski. Orunada, an online and
real-time unsupervised network anomaly detector. IEEE Transaction on
Network and System Management (TNSM), 2016.

H2020-ICT-2014-1 Project No. 644960 20

	Introduction
	Development Environment
	Implementation of the monitoring architecture
	The Monitoring Controller
	The Monitoring Database
	The Monitoring API
	The Monitoring probes
	Anomaly detection

	Demonstration of the Monitoring Platform
	Demonstrator description
	Integration of monitoring probes

	Summary
	Acronyms

